Bayesian inference for the multinomial probit model, using the Gibbs sampler with data augmentation, has been recently considered by some authors. The present paper introduces a modification of the sampling technique, by defining a hybrid Markov chain in which, after each Gibbs sampling cycle, a Metropolis step is carried out along a direction of constant likelihood. Examples with simulated data sets motivate and illustrate the new technique. A proof of the ergodicity of the hybrid Markov chain is also given.