A hybrid Markov chain for the Bayesian analysis of the multinomial probit model

被引:0
|
作者
Agostino Nobile
机构
[1] University of Bristol,Department of Mathematics
来源
关键词
Multinomial probit model; Gibbs sampling; Metropolis algorithm; Bayesian analysis;
D O I
暂无
中图分类号
学科分类号
摘要
Bayesian inference for the multinomial probit model, using the Gibbs sampler with data augmentation, has been recently considered by some authors. The present paper introduces a modification of the sampling technique, by defining a hybrid Markov chain in which, after each Gibbs sampling cycle, a Metropolis step is carried out along a direction of constant likelihood. Examples with simulated data sets motivate and illustrate the new technique. A proof of the ergodicity of the hybrid Markov chain is also given.
引用
收藏
页码:229 / 242
页数:13
相关论文
共 50 条
  • [1] A hybrid Markov chain for the Bayesian analysis of the multinomial probit model
    Nobile, A
    [J]. STATISTICS AND COMPUTING, 1998, 8 (03) : 229 - 242
  • [2] A Bayesian method for multinomial probit model
    Koo, Donghyun
    Kim, Chanmin
    Lee, Keunbaik
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2023, 52 (01) : 265 - 281
  • [3] A Bayesian method for multinomial probit model
    Donghyun Koo
    Chanmin Kim
    Keunbaik Lee
    [J]. Journal of the Korean Statistical Society, 2023, 52 : 265 - 281
  • [4] A BAYESIAN MULTINOMIAL PROBIT MODEL FOR THE ANALYSIS OF PANEL CHOICE DATA
    Fong, Duncan K. H.
    Kim, Sunghoon
    Chen, Zhe
    DeSarbo, Wayne S.
    [J]. PSYCHOMETRIKA, 2016, 81 (01) : 161 - 183
  • [5] A Bayesian analysis of the multinomial probit model with fully identified parameters
    McCulloch, RE
    Polson, NG
    Rossi, PE
    [J]. JOURNAL OF ECONOMETRICS, 2000, 99 (01) : 173 - 193
  • [6] A Bayesian Multinomial Probit MODEL FOR THE ANALYSIS OF PANEL CHOICE DATA
    Duncan K. H. Fong
    Sunghoon Kim
    Zhe Chen
    Wayne S. DeSarbo
    [J]. Psychometrika, 2016, 81 : 161 - 183
  • [7] Scalable Bayesian Estimation in the Multinomial Probit Model
    Loaiza-Maya, Ruben
    Nibbering, Didier
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2022, 40 (04) : 1678 - 1690
  • [8] A Bayesian analysis of the multinomial probit model using marginal data augmentation
    Imai, K
    van Dyk, DA
    [J]. JOURNAL OF ECONOMETRICS, 2005, 124 (02) : 311 - 334
  • [9] Globally and symmetrically identified Bayesian multinomial probit model
    Maolin Pan
    Minggao Gu
    Xianyi Wu
    Xiaodan Fan
    [J]. Statistics and Computing, 2023, 33 (3)
  • [10] Globally and symmetrically identified Bayesian multinomial probit model
    Pan, Maolin
    Gu, Minggao
    Wu, Xianyi
    Fan, Xiaodan
    [J]. STATISTICS AND COMPUTING, 2023, 33 (03)