A Bayesian Multinomial Probit MODEL FOR THE ANALYSIS OF PANEL CHOICE DATA

被引:0
|
作者
Duncan K. H. Fong
Sunghoon Kim
Zhe Chen
Wayne S. DeSarbo
机构
[1] The Pennsylvania State University,Smeal College of Business
[2] Arizona State University,W.P. Carey School of Business
[3] Google Inc.,undefined
[4] The Pennsylvania State University,undefined
来源
Psychometrika | 2016年 / 81卷
关键词
Bayesian analysis; heterogeneity; multinomial probit model; panel data; parameter expansion; marketing; consumer psychology;
D O I
暂无
中图分类号
学科分类号
摘要
A new Bayesian multinomial probit model is proposed for the analysis of panel choice data. Using a parameter expansion technique, we are able to devise a Markov Chain Monte Carlo algorithm to compute our Bayesian estimates efficiently. We also show that the proposed procedure enables the estimation of individual level coefficients for the single-period multinomial probit model even when the available prior information is vague. We apply our new procedure to consumer purchase data and reanalyze a well-known scanner panel dataset that reveals new substantive insights. In addition, we delineate a number of advantageous features of our proposed procedure over several benchmark models. Finally, through a simulation analysis employing a fractional factorial design, we demonstrate that the results from our proposed model are quite robust with respect to differing factors across various conditions.
引用
收藏
页码:161 / 183
页数:22
相关论文
共 50 条
  • [1] A BAYESIAN MULTINOMIAL PROBIT MODEL FOR THE ANALYSIS OF PANEL CHOICE DATA
    Fong, Duncan K. H.
    Kim, Sunghoon
    Chen, Zhe
    DeSarbo, Wayne S.
    [J]. PSYCHOMETRIKA, 2016, 81 (01) : 161 - 183
  • [2] A Bayesian mixed logit-probit model for multinomial choice
    Burda, Martin
    Harding, Matthew
    Hausman, Jerry
    [J]. JOURNAL OF ECONOMETRICS, 2008, 147 (02) : 232 - 246
  • [3] A Bayesian analysis of the multinomial probit model using marginal data augmentation
    Imai, K
    van Dyk, DA
    [J]. JOURNAL OF ECONOMETRICS, 2005, 124 (02) : 311 - 334
  • [4] A Bayesian method for multinomial probit model
    Koo, Donghyun
    Kim, Chanmin
    Lee, Keunbaik
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2023, 52 (01) : 265 - 281
  • [5] A Bayesian method for multinomial probit model
    Donghyun Koo
    Chanmin Kim
    Keunbaik Lee
    [J]. Journal of the Korean Statistical Society, 2023, 52 : 265 - 281
  • [6] A hybrid Markov chain for the Bayesian analysis of the multinomial probit model
    Nobile, A
    [J]. STATISTICS AND COMPUTING, 1998, 8 (03) : 229 - 242
  • [7] A hybrid Markov chain for the Bayesian analysis of the multinomial probit model
    Agostino Nobile
    [J]. Statistics and Computing, 1998, 8 : 229 - 242
  • [8] A Bayesian analysis of the multinomial probit model with fully identified parameters
    McCulloch, RE
    Polson, NG
    Rossi, PE
    [J]. JOURNAL OF ECONOMETRICS, 2000, 99 (01) : 173 - 193
  • [9] Scalable Bayesian Estimation in the Multinomial Probit Model
    Loaiza-Maya, Ruben
    Nibbering, Didier
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2022, 40 (04) : 1678 - 1690
  • [10] Bayesian estimation of multinomial probit models of work trip choice
    Yeonbae Kim
    Tai-Yoo Kim
    Eunnyeong Heo
    [J]. Transportation, 2003, 30 : 351 - 365