A Bayesian mixed logit-probit model for multinomial choice

被引:64
|
作者
Burda, Martin [1 ]
Harding, Matthew [2 ]
Hausman, Jerry [3 ]
机构
[1] Univ Toronto, Dept Econ, Toronto, ON M5S 3G7, Canada
[2] Stanford Univ, Dept Econ, Stanford, CA 94305 USA
[3] MIT, Dept Econ, Cambridge, MA 02142 USA
基金
英国经济与社会研究理事会;
关键词
Multinomial discrete choice model; Dirichlet process prior; Non-conjugate priors; Hierarchical latent class models;
D O I
10.1016/j.jeconom.2008.09.029
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper, we introduce a new flexible mixed model for multinomial discrete choice where the key individual- and alternative-specific parameters of interest are allowed to follow an assumption-free nonparametric density specification, while other alternative-specific coefficients are assumed to be drawn from a multivariate Normal distribution, which eliminates the independence of irrelevant alternatives assumption at the individual level. A hierarchical specification of our model allows us to break down a complex data structure into a set of submodels with the desired features that are naturally assembled in the original system. We estimate the model, using a Bayesian Markov Chain Monte Carlo technique with a multivariate Dirichlet Process (I)P) prior on the coefficients with nonparametrically estimated density. We employ a "latent class" sampling algorithm, which is applicable to a general class of models, including non-conjugate DP base priors. The model is applied to Supermarket choices of a panel of Houston households whose shopping behavior was observed over a 24-month period in years 2004-2005. We estimate the nonparametric density of two key variables of interest: the price of a basket of goods based on scanner data, and driving distance to the supermarket based on their respective locations. Our semi-parametric approach allows us to identify a complex multi-modal preference distribution, which distinguishes between inframarginal consumers and consumers who strongly value either lower prices or shopping convenience. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:232 / 246
页数:15
相关论文
共 50 条
  • [1] Multinomial probit and multinomial logit: a comparison of choice models for voting research
    Dow, JK
    Endersby, JW
    [J]. ELECTORAL STUDIES, 2004, 23 (01) : 107 - 122
  • [2] A BAYESIAN MULTINOMIAL PROBIT MODEL FOR THE ANALYSIS OF PANEL CHOICE DATA
    Fong, Duncan K. H.
    Kim, Sunghoon
    Chen, Zhe
    DeSarbo, Wayne S.
    [J]. PSYCHOMETRIKA, 2016, 81 (01) : 161 - 183
  • [3] A Bayesian Multinomial Probit MODEL FOR THE ANALYSIS OF PANEL CHOICE DATA
    Duncan K. H. Fong
    Sunghoon Kim
    Zhe Chen
    Wayne S. DeSarbo
    [J]. Psychometrika, 2016, 81 : 161 - 183
  • [4] Bayesian nonparametric estimation and consistency of mixed multinomial logit choice models
    De Blasi, Pierpaolo
    James, Lancelot F.
    Lau, John W.
    [J]. BERNOULLI, 2010, 16 (03) : 679 - 704
  • [5] TESTING THE MULTINOMIAL LOGIT MODEL AGAINST THE MULTINOMIAL PROBIT MODEL WITHOUT ESTIMATING THE PROBIT PARAMETERS
    HOROWITZ, J
    [J]. TRANSPORTATION SCIENCE, 1981, 15 (02) : 153 - 163
  • [6] A Bayesian Mixed Multinomial Logit Model for choice-sets and decision-makers' heterogeneity
    Carota, Cinzia
    Nava, Consuelo Rubina
    [J]. APPLIED ECONOMICS LETTERS, 2021, 28 (20) : 1767 - 1771
  • [7] Vacation length choice: A dynamic mixed multinomial logit model
    Grigolon, Anna B.
    Borgers, Aloys W. J.
    Kemperman, Astrid D. A. M.
    Timmermans, Harry J. P.
    [J]. TOURISM MANAGEMENT, 2014, 41 : 158 - 167
  • [9] A Bayesian method for multinomial probit model
    Koo, Donghyun
    Kim, Chanmin
    Lee, Keunbaik
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2023, 52 (01) : 265 - 281
  • [10] A Bayesian method for multinomial probit model
    Donghyun Koo
    Chanmin Kim
    Keunbaik Lee
    [J]. Journal of the Korean Statistical Society, 2023, 52 : 265 - 281