A Bayesian analysis of the multinomial probit model with fully identified parameters

被引:141
|
作者
McCulloch, RE [1 ]
Polson, NG [1 ]
Rossi, PE [1 ]
机构
[1] Univ Chicago, Grad Sch Business, Chicago, IL 60637 USA
关键词
probit models; Bayesian analysis; priors;
D O I
10.1016/S0304-4076(00)00034-8
中图分类号
F [经济];
学科分类号
02 ;
摘要
We present a new prior and corresponding algorithm for Bayesian analysis of the multinomial probit model. Our new approach places a prior directly on the identified parameter space. The key is the specification of a prior on the covariance matrix so that the (1,1) element if fixed at 1 and it is possible to draw from the posterior using standard distributions. Analytical results are derived which can be used to aid in assessment of the prior. (C) 2000 Elsevier Science S.A. All rights reserved. JEL classification: C11; C25; C33; C35.
引用
收藏
页码:173 / 193
页数:21
相关论文
共 50 条
  • [1] Globally and symmetrically identified Bayesian multinomial probit model
    Maolin Pan
    Minggao Gu
    Xianyi Wu
    Xiaodan Fan
    Statistics and Computing, 2023, 33 (3)
  • [2] Globally and symmetrically identified Bayesian multinomial probit model
    Pan, Maolin
    Gu, Minggao
    Wu, Xianyi
    Fan, Xiaodan
    STATISTICS AND COMPUTING, 2023, 33 (03)
  • [3] A Bayesian method for multinomial probit model
    Koo, Donghyun
    Kim, Chanmin
    Lee, Keunbaik
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2023, 52 (01) : 265 - 281
  • [4] A Bayesian method for multinomial probit model
    Donghyun Koo
    Chanmin Kim
    Keunbaik Lee
    Journal of the Korean Statistical Society, 2023, 52 : 265 - 281
  • [5] A BAYESIAN MULTINOMIAL PROBIT MODEL FOR THE ANALYSIS OF PANEL CHOICE DATA
    Fong, Duncan K. H.
    Kim, Sunghoon
    Chen, Zhe
    DeSarbo, Wayne S.
    PSYCHOMETRIKA, 2016, 81 (01) : 161 - 183
  • [6] A hybrid Markov chain for the Bayesian analysis of the multinomial probit model
    Nobile, A
    STATISTICS AND COMPUTING, 1998, 8 (03) : 229 - 242
  • [7] A hybrid Markov chain for the Bayesian analysis of the multinomial probit model
    Agostino Nobile
    Statistics and Computing, 1998, 8 : 229 - 242
  • [8] A Bayesian Multinomial Probit MODEL FOR THE ANALYSIS OF PANEL CHOICE DATA
    Duncan K. H. Fong
    Sunghoon Kim
    Zhe Chen
    Wayne S. DeSarbo
    Psychometrika, 2016, 81 : 161 - 183
  • [9] Scalable Bayesian Estimation in the Multinomial Probit Model
    Loaiza-Maya, Ruben
    Nibbering, Didier
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2022, 40 (04) : 1678 - 1690
  • [10] TESTING THE MULTINOMIAL LOGIT MODEL AGAINST THE MULTINOMIAL PROBIT MODEL WITHOUT ESTIMATING THE PROBIT PARAMETERS
    HOROWITZ, J
    TRANSPORTATION SCIENCE, 1981, 15 (02) : 153 - 163