MNP: R package for fitting the multinomial probit model

被引:0
|
作者
Imai, K [1 ]
van Dyk, DA
机构
[1] Princeton Univ, Dept Polit, Princeton, NJ 08544 USA
[2] Univ Calif Irvine, Irvine, CA USA
来源
JOURNAL OF STATISTICAL SOFTWARE | 2005年 / 14卷 / 03期
关键词
data augmentation; discrete choice models; Markov chain Monte Carlo; preference data;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
MNP is a publicly available R package that fits the Bayesian multinomial probit model via Markov chain Monte Carlo. The multinomial probit model is often used to analyze the discrete choices made by individuals recorded in survey data. Examples where the multinomial probit model may be useful include the analysis of product choice by consumers in market research and the analysis of candidate or party choice by voters in electoral studies. The MNP software can also fit the model with different choice sets for each individual, and complete or partial individual choice orderings of the available alternatives from the choice set. The estimation is based on the efficient marginal data augmentation algorithm that is developed by Imai and van Dyk (2005).
引用
收藏
页数:32
相关论文
共 50 条
  • [21] A Multinomial Ordinal Probit Model with Singular Value Decomposition Method for a Multinomial Trait
    Soonil Kwon
    Goodarzi, Mark O.
    Taylor, Kent D.
    Jinrui Cui
    Y.-D. Ida Chen
    Rotter, Jerome I.
    Willa Hsueh
    Xiuqing Guo
    JOURNAL OF PROBABILITY AND STATISTICS, 2012, 2012
  • [22] Globally and symmetrically identified Bayesian multinomial probit model
    Maolin Pan
    Minggao Gu
    Xianyi Wu
    Xiaodan Fan
    Statistics and Computing, 2023, 33 (3)
  • [23] Globally and symmetrically identified Bayesian multinomial probit model
    Pan, Maolin
    Gu, Minggao
    Wu, Xianyi
    Fan, Xiaodan
    STATISTICS AND COMPUTING, 2023, 33 (03)
  • [24] GGUM: An R Package for Fitting the Generalized Graded Unfolding Model
    Tendeiro, Jorge N.
    Castro-Alvarez, Sebastian
    APPLIED PSYCHOLOGICAL MEASUREMENT, 2019, 43 (02) : 172 - 173
  • [25] ALTERNATIVE COMPUTATIONAL APPROACHES TO INFERENCE IN THE MULTINOMIAL PROBIT MODEL
    GEWEKE, J
    KEANE, M
    RUNKLE, D
    REVIEW OF ECONOMICS AND STATISTICS, 1994, 76 (04) : 609 - 632
  • [26] AN INVESTIGATION OF THE ACCURACY OF THE CLARK APPROXIMATION FOR THE MULTINOMIAL PROBIT MODEL
    HOROWITZ, JL
    SPARMANN, JM
    DAGANZO, CF
    TRANSPORTATION SCIENCE, 1982, 16 (03) : 382 - 401
  • [27] BioRssay: an R package for analyses of bioassays and probit graphs
    Piyal Karunarathne
    Nicolas Pocquet
    Pierrick Labbé
    Pascal Milesi
    Parasites & Vectors, 15
  • [28] BioRssay: an R package for analyses of bioassays and probit graphs
    Karunarathne, Piyal
    Pocquet, Nicolas
    Labbe, Pierrick
    Milesi, Pascal
    PARASITES & VECTORS, 2022, 15 (01)
  • [29] fitdistrplus: An R Package for Fitting Distributions
    Delignette-Muller, Marie Laure
    Dutang, Christophe
    JOURNAL OF STATISTICAL SOFTWARE, 2015, 64 (04): : 1 - 34
  • [30] A hybrid Markov chain for the Bayesian analysis of the multinomial probit model
    Nobile, A
    STATISTICS AND COMPUTING, 1998, 8 (03) : 229 - 242