The Markov moment problem and de Finetti's theorem: Part II

被引:9
|
作者
Diaconis, P [1 ]
Freedman, D
机构
[1] Stanford Univ, Dept Math & Stat, Stanford, CA 94305 USA
[2] Univ Calif Berkeley, Dept Math & Stat, Berkeley, CA 94720 USA
关键词
General Setting; Inversion Formula; Moment Problem; Abstract Version; Bounded Density;
D O I
10.1007/s00209-003-0636-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper gives an abstract version of de Finetti's theorem that characterizes mixing measures with L-p densities. The general setting is reviewed; after the theorem is proved, it is specialized to coin tossing and to exponential random variables. Laplace transforms of bounded densities are characterized, and inversion formulas are discussed.
引用
收藏
页码:201 / 212
页数:12
相关论文
共 50 条
  • [31] Remarks on the Quantum de Finetti Theorem for Bosonic Systems
    Lewin, Mathieu
    Phan Thanh Nam
    Rougerie, Nicolas
    APPLIED MATHEMATICS RESEARCH EXPRESS, 2015, 2015 (01) : 48 - 63
  • [32] De Finetti's control problem with a concave bound on the control rate
    Locas, Felix
    Renaud, Jean-Francois
    JOURNAL OF APPLIED PROBABILITY, 2024, 61 (03) : 834 - 850
  • [33] Detecting the Drift of Quantum Sources: Not the de Finetti Theorem
    Schwarz, Lucia
    van Enk, S. J.
    PHYSICAL REVIEW LETTERS, 2011, 106 (18)
  • [34] A most compendious and facile quantum de Finetti theorem
    Koenig, Robert
    Mitchison, Graeme
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (01)
  • [35] COMPLETE MONOTONICITY OF THE PROBABILITY OF RUIN AND DE FINETTI'S DIVIDEND PROBLEM
    Hua DONG
    Chuancun YIN
    Journal of Systems Science & Complexity, 2012, 25 (01) : 178 - 185
  • [36] COMPLETE MONOTONICITY OF THE PROBABILITY OF RUIN AND DE FINETTI'S DIVIDEND PROBLEM
    Dong, Hua
    Yin, Chuancun
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2012, 25 (01) : 178 - 185
  • [37] Convexity and Smoothness of Scale Functions and de Finetti’s Control Problem
    Andreas E. Kyprianou
    Víctor Rivero
    Renming Song
    Journal of Theoretical Probability, 2010, 23 : 547 - 564
  • [38] Convexity and Smoothness of Scale Functions and de Finetti's Control Problem
    Kyprianou, Andreas E.
    Rivero, Victor
    Song, Renming
    JOURNAL OF THEORETICAL PROBABILITY, 2010, 23 (02) : 547 - 564
  • [39] Exchangeability and de Finetti's theorem: from probabilities to quantum-mechanical states
    Schack, R
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2004, 735 : 565 - 572
  • [40] An information-theoretic proof of a finite de Finetti theorem
    Gavalakis, Lampros
    Kontoyiannis, Ioannis
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2021, 26