De Finetti's control problem with a concave bound on the control rate

被引:0
|
作者
Locas, Felix [1 ,2 ]
Renaud, Jean-Francois [1 ,2 ]
机构
[1] Univ Quebec Montreal, Montreal, PQ, Canada
[2] Univ Quebec Montreal UQAM, Dept Math, 201 Av President Kennedy, Montreal, PQ H2X 3Y7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Stochastic control; absolutely continuous strategies; dividend payments; diffusion model; Brownian motion; nonlinear Ornstein-Uhlenbeck process; DIVIDEND; CONSTRAINTS;
D O I
10.1017/jpr.2023.87
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider De Finetti's control problem for absolutely continuous strategies with control rates bounded by a concave function and prove that a generalized mean-reverting strategy is optimal in a Brownian model. In order to solve this problem, we need to deal with a nonlinear Ornstein-Uhlenbeck process. Despite the level of generality of the bound imposed on the rate, an explicit expression for the value function is obtained up to the evaluation of two functions. This optimal control problem has, as special cases, those solved in Jeanblanc-Picque and Shiryaev (1995) and Renaud and Simard (2021) when the control rate is bounded by a constant and a linear function, respectively.
引用
收藏
页码:834 / 850
页数:17
相关论文
共 50 条
  • [1] De Finetti's Control Problem with Competition
    Ekstrom, Erik
    Lindensjo, Kristoffer
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2023, 87 (02):
  • [2] De Finetti’s Control Problem with Competition
    Erik Ekström
    Kristoffer Lindensjö
    [J]. Applied Mathematics & Optimization, 2023, 87
  • [3] Convexity and Smoothness of Scale Functions and de Finetti’s Control Problem
    Andreas E. Kyprianou
    Víctor Rivero
    Renming Song
    [J]. Journal of Theoretical Probability, 2010, 23 : 547 - 564
  • [4] Convexity and Smoothness of Scale Functions and de Finetti's Control Problem
    Kyprianou, Andreas E.
    Rivero, Victor
    Song, Renming
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2010, 23 (02) : 547 - 564
  • [5] De Finetti's Control Problem with Parisian Ruin for Spectrally Negative Levy Processes
    Renaud, Jean-Francois
    [J]. RISKS, 2019, 7 (03)
  • [6] On De Finetti’s optimal impulse dividend control problem under Chapter 11 bankruptcy
    Wenyuan Wang
    Ruixing Ming
    Yijun Hu
    [J]. Acta Mathematica Scientia, 2024, 44 : 215 - 233
  • [7] On De Finetti's optimal impulse dividend control problem under Chapter 11 bankruptcy
    Wang, Wenyuan
    Ming, Ruixing
    Hu, Yijun
    [J]. ACTA MATHEMATICA SCIENTIA, 2024, 44 (01) : 215 - 233
  • [8] ON DE FINETTI'S OPTIMAL IMPULSE DIVIDEND CONTROL PROBLEM UNDER CHAPTER 11 BANKRUPTCY
    王文元
    明瑞星
    胡亦钧
    [J]. Acta Mathematica Scientia, 2024, (01) : 215 - 233
  • [9] De Finetti's Dividend Problem and Impulse Control for a Two-Dimensional Insurance Risk Process
    Czarna, Irmina
    Palmowski, Zbigniew
    [J]. STOCHASTIC MODELS, 2011, 27 (02) : 220 - 250
  • [10] On the rate of convergence in de Finetti's representation theorem
    Mijoule, Guillaume
    Peccati, Giovanni
    Swan, Yvik
    [J]. ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2016, 13 (02): : 1165 - 1187