Convexity and Smoothness of Scale Functions and de Finetti's Control Problem

被引:28
|
作者
Kyprianou, Andreas E. [1 ]
Rivero, Victor [1 ,2 ]
Song, Renming [3 ]
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
[2] CIMAT AC, Guanajuato 36000, Mexico
[3] Univ Illinois, Dept Math, Urbana, IL 61801 USA
基金
英国工程与自然科学研究理事会;
关键词
Potential analysis; Special Bernstein function; Scale functions for spectrally negative Levy processes; Control theory; RUIN PROBABILITIES; LEVY PROCESSES; DIVIDEND PROBLEM; OVERSHOOTS;
D O I
10.1007/s10959-009-0220-z
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We continue the recent work of Avram et al. (Ann. Appl. Probab. 17:156-180, 2007) and Loeffen (Ann. Appl. Probab., 2007) by showing that whenever the L,vy measure of a spectrally negative L,vy process has a density which is log-convex then the solution of the associated actuarial control problem of de Finetti is solved by a barrier strategy. Moreover, the level of the barrier can be identified in terms of the scale function of the underlying L,vy process. Our method appeals directly to very recent developments in the theory of potential analysis of subordinators and their application to convexity and smoothness properties of the relevant scale functions.
引用
收藏
页码:547 / 564
页数:18
相关论文
共 50 条
  • [1] Convexity and Smoothness of Scale Functions and de Finetti’s Control Problem
    Andreas E. Kyprianou
    Víctor Rivero
    Renming Song
    [J]. Journal of Theoretical Probability, 2010, 23 : 547 - 564
  • [2] De Finetti's Control Problem with Competition
    Ekstrom, Erik
    Lindensjo, Kristoffer
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2023, 87 (02):
  • [3] De Finetti’s Control Problem with Competition
    Erik Ekström
    Kristoffer Lindensjö
    [J]. Applied Mathematics & Optimization, 2023, 87
  • [4] De Finetti's control problem with a concave bound on the control rate
    Locas, Felix
    Renaud, Jean-Francois
    [J]. JOURNAL OF APPLIED PROBABILITY, 2024, 61 (03) : 834 - 850
  • [5] de Finetti's contribution to the theory of random functions
    Regazzini, Eugenio
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2008, 47 (03) : 387 - 393
  • [6] De Finetti's Control Problem with Parisian Ruin for Spectrally Negative Levy Processes
    Renaud, Jean-Francois
    [J]. RISKS, 2019, 7 (03)
  • [7] On De Finetti’s optimal impulse dividend control problem under Chapter 11 bankruptcy
    Wenyuan Wang
    Ruixing Ming
    Yijun Hu
    [J]. Acta Mathematica Scientia, 2024, 44 : 215 - 233
  • [8] On De Finetti's optimal impulse dividend control problem under Chapter 11 bankruptcy
    Wang, Wenyuan
    Ming, Ruixing
    Hu, Yijun
    [J]. ACTA MATHEMATICA SCIENTIA, 2024, 44 (01) : 215 - 233
  • [9] Functions related to convexity and smoothness of normed spaces
    Banaś J.
    Rzepka B.
    [J]. Rendiconti del Circolo Matematico di Palermo, 1997, 46 (3) : 395 - 424
  • [10] ON DE FINETTI'S OPTIMAL IMPULSE DIVIDEND CONTROL PROBLEM UNDER CHAPTER 11 BANKRUPTCY
    王文元
    明瑞星
    胡亦钧
    [J]. Acta Mathematica Scientia, 2024, (01) : 215 - 233