The Markov moment problem and de Finetti's theorem: Part II

被引:9
|
作者
Diaconis, P [1 ]
Freedman, D
机构
[1] Stanford Univ, Dept Math & Stat, Stanford, CA 94305 USA
[2] Univ Calif Berkeley, Dept Math & Stat, Berkeley, CA 94720 USA
关键词
General Setting; Inversion Formula; Moment Problem; Abstract Version; Bounded Density;
D O I
10.1007/s00209-003-0636-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper gives an abstract version of de Finetti's theorem that characterizes mixing measures with L-p densities. The general setting is reviewed; after the theorem is proved, it is specialized to coin tossing and to exponential random variables. Laplace transforms of bounded densities are characterized, and inversion formulas are discussed.
引用
收藏
页码:201 / 212
页数:12
相关论文
共 50 条
  • [21] De Finetti Theorem on the CAR Algebra
    Crismale, Vitonofrio
    Fidaleo, Francesco
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 315 (01) : 135 - 152
  • [22] The de Finetti theorem for test spaces
    Barrett, Jonathan
    Leifer, Matthew
    NEW JOURNAL OF PHYSICS, 2009, 11
  • [23] A noncommutative extended de Finetti theorem
    Koestler, Claus
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (04) : 1073 - 1120
  • [24] A noncommutative de Finetti theorem for boolean independence
    Liu, Weihua
    JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 269 (07) : 1950 - 1994
  • [25] Measurements of entanglement and a quantum de Finetti theorem
    Hudson, RL
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2004, 43 (7-8) : 1841 - 1847
  • [26] Measurements of Entanglement and a Quantum de Finetti Theorem
    R. L. Hudson
    International Journal of Theoretical Physics, 2004, 43 : 1841 - 1847
  • [27] THE DE FINETTI PROBLEM WITH UNCERTAIN COMPETITION
    Ekstrom, Erik
    Milazzo, Alessandro
    Olofsson, Marcus
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2023, 61 (05) : 2997 - 3017
  • [28] De Finetti's theorem and related results for infinite weighted exchangeable sequences
    Barber, Rina Foygel
    Candes, Emmanuel J.
    Ramdas, Aaditya
    Tibshirani, Ryan J.
    BERNOULLI, 2024, 30 (04) : 3004 - 3028
  • [29] Complete monotonicity of the probability of ruin and de Finetti’s dividend problem
    Hua Dong
    Chuancun Yin
    Journal of Systems Science and Complexity, 2012, 25 : 178 - 185
  • [30] THEOREM OF DE-FINETTI, ODDSMAKING, AND GAME THEORY
    HEATH, DC
    SUDDERTH, WD
    ANNALS OF MATHEMATICAL STATISTICS, 1972, 43 (06): : 2072 - 2077