The Markov moment problem and de Finetti's theorem: Part II

被引:9
|
作者
Diaconis, P [1 ]
Freedman, D
机构
[1] Stanford Univ, Dept Math & Stat, Stanford, CA 94305 USA
[2] Univ Calif Berkeley, Dept Math & Stat, Berkeley, CA 94720 USA
关键词
General Setting; Inversion Formula; Moment Problem; Abstract Version; Bounded Density;
D O I
10.1007/s00209-003-0636-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper gives an abstract version of de Finetti's theorem that characterizes mixing measures with L-p densities. The general setting is reviewed; after the theorem is proved, it is specialized to coin tossing and to exponential random variables. Laplace transforms of bounded densities are characterized, and inversion formulas are discussed.
引用
收藏
页码:201 / 212
页数:12
相关论文
共 50 条
  • [11] A fermionic de Finetti theorem
    Krumnow, Christian
    Zimboras, Zoltan
    Eisert, Jens
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (12)
  • [12] MAXIMUM LIKELIHOOD METHOD IN DE FINETTI'S THEOREM
    Melkumova, L. E.
    Shatskikh, S. Ya
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2019, 63 (04) : 657 - 663
  • [13] A q-analogue of de Finetti's theorem
    Gnedin, Alexander
    Olshanski, Grigori
    ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01):
  • [14] SINGLETON CONDITIONS AND QUANTUM DE FINETTI'S THEOREM
    Accardi, Luigi
    Ben Ghorbal, Anis
    Crismale, Vitonofrio
    Liu, Yun Gang
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2008, 11 (04) : 639 - 660
  • [15] On the rate of convergence in de Finetti's representation theorem
    Mijoule, Guillaume
    Peccati, Giovanni
    Swan, Yvik
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2016, 13 (02): : 1165 - 1187
  • [16] Exchangeable Processes: de Finetti's Theorem Revisited
    Lehrer, Ehud
    Shaiderman, Dimitry
    MATHEMATICS OF OPERATIONS RESEARCH, 2020, 45 (03) : 1153 - 1163
  • [17] De Finetti's Control Problem with Competition
    Ekstrom, Erik
    Lindensjo, Kristoffer
    APPLIED MATHEMATICS AND OPTIMIZATION, 2023, 87 (02):
  • [18] De Finetti’s Control Problem with Competition
    Erik Ekström
    Kristoffer Lindensjö
    Applied Mathematics & Optimization, 2023, 87
  • [19] ON LEHNER'S 'FREE' NONCOMMUTATIVE ANALOGUE OF DE FINETTI'S THEOREM
    Koestler, Claus
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (03) : 885 - 895
  • [20] De Finetti Theorem on the CAR Algebra
    Vitonofrio Crismale
    Francesco Fidaleo
    Communications in Mathematical Physics, 2012, 315 : 135 - 152