The Markov moment problem and de Finetti's theorem: Part II

被引:9
|
作者
Diaconis, P [1 ]
Freedman, D
机构
[1] Stanford Univ, Dept Math & Stat, Stanford, CA 94305 USA
[2] Univ Calif Berkeley, Dept Math & Stat, Berkeley, CA 94720 USA
关键词
General Setting; Inversion Formula; Moment Problem; Abstract Version; Bounded Density;
D O I
10.1007/s00209-003-0636-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper gives an abstract version of de Finetti's theorem that characterizes mixing measures with L-p densities. The general setting is reviewed; after the theorem is proved, it is specialized to coin tossing and to exponential random variables. Laplace transforms of bounded densities are characterized, and inversion formulas are discussed.
引用
收藏
页码:201 / 212
页数:12
相关论文
共 50 条
  • [41] De Finetti representation theorem for quantum-process tomography
    Fuchs, CA
    Schack, R
    Scudo, PF
    PHYSICAL REVIEW A, 2004, 69 (06): : 062305 - 1
  • [42] De Finetti's optimal dividends problem with an affine penalty function at ruin
    Loeffen, Ronnie L.
    Renaud, Jean-Francois
    INSURANCE MATHEMATICS & ECONOMICS, 2010, 46 (01): : 98 - 108
  • [43] On Krein's theorem for indeterminacy of the classical moment problem
    Pedersen, HL
    JOURNAL OF APPROXIMATION THEORY, 1998, 95 (01) : 90 - 100
  • [44] Quantum de Finetti theorem in phase-space representation
    Leverrier, Anthony
    Cerf, Nicolas J.
    PHYSICAL REVIEW A, 2009, 80 (01):
  • [45] Finite de Finetti theorem for infinite-dimensional systems
    D'Cruz, Christian
    Osborne, Tobias J.
    Schack, Rudiger
    PHYSICAL REVIEW LETTERS, 2007, 98 (16)
  • [46] ON QUANTUM DE FINETTI'S THEOREMS
    Crismale, Vitonofrio
    Lu, Yun Gang
    QUANTUM PROBABILITY AND INFINITE DIMENSIONAL ANALYSIS, 2010, 25 : 117 - 127
  • [47] Superresolution in the Markov moment problem
    Lewis, AS
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 197 (03) : 774 - 780
  • [48] On Markov Moment Problem, Polynomial Approximation on Unbounded Subsets, and Mazur-Orlicz Theorem
    Olteanu, Octav
    SYMMETRY-BASEL, 2021, 13 (10):
  • [49] De Finetti's Control Problem with Parisian Ruin for Spectrally Negative Levy Processes
    Renaud, Jean-Francois
    RISKS, 2019, 7 (03)
  • [50] Moment Problem and Spectral Theorem
    Miloslav Duchoň
    Sylvia Pulmannová
    International Journal of Theoretical Physics, 2002, 41 : 375 - 385