THE DE FINETTI PROBLEM WITH UNCERTAIN COMPETITION

被引:0
|
作者
Ekstrom, Erik [1 ]
Milazzo, Alessandro [2 ]
Olofsson, Marcus [3 ]
机构
[1] Uppsala Univ, Dept Math, SE-75106 Uppsala, Sweden
[2] Univ Torino, Sch Management & Econ, Dept ESOMAS, Cso Unione Soviet 218 bis, I-10134 Turin, Italy
[3] Umera Univ, Dept Math & Math Stat, S-90187 Umera, Sweden
基金
瑞典研究理事会;
关键词
the de Finetti problem; uncertain competition; controller-and-stopper game; STOCHASTIC CONTROLLER; GAME;
D O I
10.1137/22M1524849
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider a resource extraction problem which extends the classical de Finetti problem for a Wiener process to include the case when a competitor, who is equipped with the ability to extract all the remaining resources in one piece, may exist. This situation is modeled as a nonzero-sum controller-and-stopper game with incomplete information. For this stochastic game we provide a Nash equilibrium with an explicit structure. In equilibrium, the agent and the competitor use singular strategies in such a way that a two-dimensional process, which represents available resources and the filtering estimate of active competition, reflects in a specific direction along a given boundary.
引用
收藏
页码:2997 / 3017
页数:21
相关论文
共 50 条
  • [1] De Finetti's Control Problem with Competition
    Ekstrom, Erik
    Lindensjo, Kristoffer
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2023, 87 (02):
  • [2] De Finetti’s Control Problem with Competition
    Erik Ekström
    Kristoffer Lindensjö
    [J]. Applied Mathematics & Optimization, 2023, 87
  • [3] THE LOGIC OF THE 'UNCERTAIN' AND BRUNO DE FINETTI'S CIVIL MATHEMATICS
    Amari, Giuseppe
    de Finetti, Fulvia
    [J]. GLOBAL & LOCAL ECONOMIC REVIEW, 2018, 22 (02): : 9 - 26
  • [4] Complete monotonicity of the probability of ruin and de Finetti’s dividend problem
    Hua Dong
    Chuancun Yin
    [J]. Journal of Systems Science and Complexity, 2012, 25 : 178 - 185
  • [5] The de Finetti transform
    Press, SJ
    [J]. MAXIMUM ENTROPY AND BAYESIAN METHODS, 1996, 79 : 101 - 108
  • [6] De Finetti on uncertainty
    Feduzi, Alberto
    Runde, Jochen
    Zappia, Carlo
    [J]. CAMBRIDGE JOURNAL OF ECONOMICS, 2014, 38 (01) : 1 - 21
  • [7] De Finetti's control problem with a concave bound on the control rate
    Locas, Felix
    Renaud, Jean-Francois
    [J]. JOURNAL OF APPLIED PROBABILITY, 2024, 61 (03) : 834 - 850
  • [8] The Markov moment problem and de Finetti’s theorem: Part II
    Persi Diaconis
    David Freedman
    [J]. Mathematische Zeitschrift, 2004, 247 : 201 - 212
  • [9] COMPLETE MONOTONICITY OF THE PROBABILITY OF RUIN AND DE FINETTI'S DIVIDEND PROBLEM
    Hua DONG
    Chuancun YIN
    [J]. Journal of Systems Science & Complexity, 2012, 25 (01) : 178 - 185
  • [10] COMPLETE MONOTONICITY OF THE PROBABILITY OF RUIN AND DE FINETTI'S DIVIDEND PROBLEM
    Dong, Hua
    Yin, Chuancun
    [J]. JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2012, 25 (01) : 178 - 185