MagicCubePose, A more comprehensive 6D pose estimation network

被引:0
|
作者
Li, Fudong [1 ]
Gao, Dongyang [1 ]
Huang, Qiang [1 ]
Li, Wei [1 ]
Yang, Yuequan [1 ]
机构
[1] Yangzhou Univ, Coll Informat Engn, Artificial Intelligence Coll, Yangzhou 225000, Jiangsu, Peoples R China
关键词
D O I
10.1038/s41598-023-32936-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Most of the current mainstream 6D pose estimation methods use template or voting-based methods. Such methods are usually multi-stage or have multiple assumptions and post-correction, which will cause a certain degree of information redundancy and increase the computational cost, their real-time detection performance is poor. We point out that traditional path aggregation networks introduce new errors, therefore, we propose a loss function: MagicCubeLoss, a portable module: MagicCubeNet, and the corresponding 6D pose estimation model: MagicCubePose. MagicCubePose has good expansion performance and can build more efficient models for different calculation power and scenarios. Experiments show that our model has good real-time detection performance and the highest ADD(-S) accuracy.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] EFN6D: an efficient RGB-D fusion network for 6D pose estimation
    Wang Y.
    Jiang X.
    Fujita H.
    Fang Z.
    Qiu X.
    Chen J.
    Journal of Ambient Intelligence and Humanized Computing, 2024, 15 (01) : 75 - 88
  • [22] Single Shot 6D Object Pose Estimation
    Kleeberger, Kilian
    Huber, Marco F.
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 6239 - 6245
  • [23] BOP: Benchmark for 6D Object Pose Estimation
    Hodan, Tomas
    Michel, Frank
    Brachmann, Eric
    Kehl, Wadim
    Buch, Anders Glent
    Kraft, Dirk
    Drost, Bertram
    Vidal, Joel
    Ihrke, Stephan
    Zabulis, Xenophon
    Sahin, Caner
    Manhardt, Fabian
    Tombari, Federico
    Kim, Tae-Kyun
    Matas, Jiri
    Rother, Carsten
    COMPUTER VISION - ECCV 2018, PT X, 2018, 11214 : 19 - 35
  • [24] Survey on 6D Pose Estimation of Rigid Object
    Chen, Jiale
    Zhang, Lijun
    Liu, Yi
    Xu, Chi
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 7440 - 7445
  • [25] Orientation Keypoints for 6D Human Pose Estimation
    Fisch, Martin
    Clark, Ronald
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 10145 - 10158
  • [26] A Comprehensive Review on 3D Object Detection and 6D Pose Estimation With Deep Learning
    Hoque, Sabera
    Arafat, Md. Yasir
    Xu, Shuxiang
    Maiti, Ananda
    Wei, Yuchen
    IEEE ACCESS, 2021, 9 : 143746 - 143770
  • [27] 3D Point-to-Keypoint Voting Network for 6D Pose Estimation
    Hua, Weitong
    Guo, Jiaxin
    Wang, Yue
    Xiong, Rong
    16TH IEEE INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV 2020), 2020, : 536 - 541
  • [28] A RGB-D feature fusion network for occluded object 6D pose estimation
    Song, Yiwei
    Tang, Chunhui
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (8-9) : 6309 - 6319
  • [29] Binocular vision object 6D pose estimation based on circulatory neural network
    Yang H.
    Li Z.
    Kang Z.-Y.
    Tian B.
    Dong Q.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2023, 57 (11): : 2179 - 2187
  • [30] DCL-Net: Deep Correspondence Learning Network for 6D Pose Estimation
    Li, Hongyang
    Lin, Jiehong
    Jia, Kui
    COMPUTER VISION, ECCV 2022, PT IX, 2022, 13669 : 369 - 385