A Comprehensive Review on 3D Object Detection and 6D Pose Estimation With Deep Learning

被引:26
|
作者
Hoque, Sabera [1 ]
Arafat, Md. Yasir [1 ]
Xu, Shuxiang [1 ]
Maiti, Ananda [1 ]
Wei, Yuchen [1 ]
机构
[1] Univ Tasmania, Sch Informat & Commun Technol, Newnham, Tas 7248, Australia
关键词
Three-dimensional displays; Object detection; Pose estimation; Laser radar; Cameras; Visualization; Automobiles; Machine learning; deep neural network; computer vision; image processing; convolutional neural network; 3D object detection; 6D pose estimation; NEURAL-NETWORKS; IMAGE FEATURES; RECOGNITION; REPRESENTATION; LOCALIZATION; TRACKING; SEGMENTATION;
D O I
10.1109/ACCESS.2021.3114399
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Nowadays, computer vision with 3D (dimension) object detection and 6D (degree of freedom) pose assumptions are widely discussed and studied in the field. In the 3D object detection process, classifications are centered on the object's size, position, and direction. And in 6D pose assumptions, networks emphasize 3D translation and rotation vectors. Successful application of these strategies can have a huge impact on various machine learning-based applications, including the autonomous vehicles, the robotics industry, and the augmented reality sector. Although extensive work has been done on 3D object detection with a pose assumption from RGB images, the challenges have not been fully resolved. Our analysis provides a comprehensive review of the proposed contemporary techniques for complete 3D object detection and the recovery of 6D pose assumptions of an object. In this review research paper, we have discussed several proposed sophisticated methods in 3D object detection and 6D pose estimation, including some popular data sets, evaluation matrix, and proposed method challenges. Most importantly, this study makes an effort to offer some possible future directions in 3D object detection and 6D pose estimation. We accept the autonomous vehicle as the sample case for this detailed review. Finally, this review provides a complete overview of the latest in-depth learning-based research studies related to 3D object detection and 6D pose estimation systems and points out a comparison between some popular frameworks. To be more concise, we propose a detailed summary of the state-of-the-art techniques of modern deep learning-based object detection and pose estimation models.
引用
收藏
页码:143746 / 143770
页数:25
相关论文
共 50 条
  • [1] Deep Learning of Local RGB-D Patches for 3D Object Detection and 6D Pose Estimation
    Kehl, Wadim
    Milletari, Fausto
    Tombari, Federico
    Ilic, Slobodan
    Navab, Nassir
    COMPUTER VISION - ECCV 2016, PT III, 2016, 9907 : 205 - 220
  • [2] Learning 6D Object Pose Estimation Using 3D Object Coordinates
    Brachmann, Eric
    Krull, Alexander
    Michel, Frank
    Gumhold, Stefan
    Shotton, Jamie
    Rother, Carsten
    COMPUTER VISION - ECCV 2014, PT II, 2014, 8690 : 536 - 551
  • [3] Towards Learning 3d Object Detection and 6d Pose Estimation from Synthetic Data
    Rudorfer, Martin
    Neumann, Lukas
    Krueger, Joerg
    2019 24TH IEEE INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2019, : 1540 - 1543
  • [4] 6D pose estimation with combined deep learning and 3D vision techniques for a fast and accurate object grasping
    Le, Tuan-Tang
    Le, Trung-Son
    Chen, Yu-Ru
    Vidal, Joel
    Lin, Chyi-Yeu
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2021, 141
  • [5] Efficient Center Voting for Object Detection and 6D Pose Estimation in 3D Point Cloud
    Guo, Jianwei
    Xing, Xuejun
    Quan, Weize
    Yan, Dong-Ming
    Gu, Qingyi
    Liu, Yang
    Zhang, Xiaopeng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 5072 - 5084
  • [6] SO(3)-Pose: SO(3)-Equivariance Learning for 6D Object Pose Estimation
    Pan, Haoran
    Zhou, Jun
    Liu, Yuanpeng
    Lu, Xuequan
    Wang, Weiming
    Yan, Xuefeng
    Wei, Mingqiang
    COMPUTER GRAPHICS FORUM, 2022, 41 (07) : 371 - 381
  • [7] Towards Deep Learning-based 6D Bin Pose Estimation in 3D Scans
    Gajdosech, Lukas
    Kocur, Viktor
    Stuchlik, Martin
    Hudec, Lukas
    Madaras, Martin
    PROCEEDINGS OF THE 17TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISAPP), VOL 4, 2022, : 545 - 552
  • [8] On Evaluation of 6D Object Pose Estimation
    Hodan, Tomas
    Matas, Jiri
    Obdrzalek, Stephan
    COMPUTER VISION - ECCV 2016 WORKSHOPS, PT III, 2016, 9915 : 606 - 619
  • [9] Uncertainty Quantification with Deep Ensembles for 6D Object Pose Estimation
    Wursthorn, Kira
    Hillemann, Markus
    Ulrich, Markus
    ISPRS ANNALS OF THE PHOTOGRAMMETRY, REMOTE SENSING AND SPATIAL INFORMATION SCIENCES: VOLUME X-2-2024, 2024, : 223 - 230
  • [10] 6D Object Pose Estimation from Approximate 3D Models for Orbital Robotics
    Ulmer, Maximilian
    Durner, Maximilian
    Sundermeyer, Martin
    Stoiber, Manuel
    Triebel, Rudolph
    2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2023, : 10749 - 10756