Towards Learning 3d Object Detection and 6d Pose Estimation from Synthetic Data

被引:0
|
作者
Rudorfer, Martin [1 ]
Neumann, Lukas [1 ]
Krueger, Joerg [1 ]
机构
[1] Tech Univ Berlin, Ind Automat Technol Grp, Berlin, Germany
关键词
object detection; synthetic data; deep learning;
D O I
10.1109/etfa.2019.8869318
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deep Learning-based approaches for 3d object detection and 6d pose estimation typically require large amounts of labeled training data. Labeling image data is expensive and particularly the 6d pose information is difficult to obtain, as it requires a complex setup during image acquisition. Training with synthetic data is therefore very attractive. Large amounts of synthetic, labeled data can be generated, but it is not yet fully understood how certain aspects of data generation affect the detection and pose estimation performance. Our work therefore focuses on creating synthetic training data and investigating the effects on detection performance. We present two methods for data generation: rendering object views and pasting them on random background images, and simulating realistic scenes. The former is computationally simpler and achieved better results, but the detection performance is still very sensitive to small changes, e.g. the type of background images.
引用
收藏
页码:1540 / 1543
页数:4
相关论文
共 50 条
  • [1] Learning 6D Object Pose Estimation Using 3D Object Coordinates
    Brachmann, Eric
    Krull, Alexander
    Michel, Frank
    Gumhold, Stefan
    Shotton, Jamie
    Rother, Carsten
    [J]. COMPUTER VISION - ECCV 2014, PT II, 2014, 8690 : 536 - 551
  • [2] A Comprehensive Review on 3D Object Detection and 6D Pose Estimation With Deep Learning
    Hoque, Sabera
    Arafat, Md. Yasir
    Xu, Shuxiang
    Maiti, Ananda
    Wei, Yuchen
    [J]. IEEE ACCESS, 2021, 9 : 143746 - 143770
  • [3] Deep Learning of Local RGB-D Patches for 3D Object Detection and 6D Pose Estimation
    Kehl, Wadim
    Milletari, Fausto
    Tombari, Federico
    Ilic, Slobodan
    Navab, Nassir
    [J]. COMPUTER VISION - ECCV 2016, PT III, 2016, 9907 : 205 - 220
  • [4] 6D Object Pose Estimation from Approximate 3D Models for Orbital Robotics
    Ulmer, Maximilian
    Durner, Maximilian
    Sundermeyer, Martin
    Stoiber, Manuel
    Triebel, Rudolph
    [J]. 2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2023, : 10749 - 10756
  • [5] Efficient Center Voting for Object Detection and 6D Pose Estimation in 3D Point Cloud
    Guo, Jianwei
    Xing, Xuejun
    Quan, Weize
    Yan, Dong-Ming
    Gu, Qingyi
    Liu, Yang
    Zhang, Xiaopeng
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 5072 - 5084
  • [6] SO(3)-Pose: SO(3)-Equivariance Learning for 6D Object Pose Estimation
    Pan, Haoran
    Zhou, Jun
    Liu, Yuanpeng
    Lu, Xuequan
    Wang, Weiming
    Yan, Xuefeng
    Wei, Mingqiang
    [J]. COMPUTER GRAPHICS FORUM, 2022, 41 (07) : 371 - 381
  • [7] Towards Deep Learning-based 6D Bin Pose Estimation in 3D Scans
    Gajdosech, Lukas
    Kocur, Viktor
    Stuchlik, Martin
    Hudec, Lukas
    Madaras, Martin
    [J]. PROCEEDINGS OF THE 17TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISAPP), VOL 4, 2022, : 545 - 552
  • [8] On Evaluation of 6D Object Pose Estimation
    Hodan, Tomas
    Matas, Jiri
    Obdrzalek, Stephan
    [J]. COMPUTER VISION - ECCV 2016 WORKSHOPS, PT III, 2016, 9915 : 606 - 619
  • [9] On Object Symmetries and 6D Pose Estimation from Images
    Pitteri, Giorgia
    Ramamonjisoa, Michael
    Ilic, Slobodan
    Lepetit, Vincent
    [J]. 2019 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2019), 2019, : 614 - 622
  • [10] Explaining the Ambiguity of Object Detection and 6D Pose From Visual Data
    Manhardt, Fabian
    Arroyo, Diego Martin
    Rupprecht, Christian
    Busam, Benjamin
    Birdal, Tolga
    Navab, Nassir
    Tombari, Federico
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 6840 - 6849