Deep Learning of Local RGB-D Patches for 3D Object Detection and 6D Pose Estimation

被引:158
|
作者
Kehl, Wadim [1 ]
Milletari, Fausto [1 ]
Tombari, Federico [1 ,2 ]
Ilic, Slobodan [1 ,3 ]
Navab, Nassir [1 ]
机构
[1] Tech Univ Munich, Munich, Germany
[2] Univ Bologna, Bologna, Italy
[3] Siemens AG, Munich, Germany
来源
关键词
D O I
10.1007/978-3-319-46487-9_13
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a 3D object detection method that uses regressed descriptors of locally-sampled RGB-D patches for 6D vote casting. For regression, we employ a convolutional auto-encoder that has been trained on a large collection of random local patches. During testing, scene patch descriptors are matched against a database of synthetic model view patches and cast 6D object votes which are subsequently filtered to refined hypotheses. We evaluate on three datasets to show that our method generalizes well to previously unseen input data, delivers robust detection results that compete with and surpass the state-of-the-art while being scalable in the number of objects.
引用
收藏
页码:205 / 220
页数:16
相关论文
共 50 条
  • [1] Robust 6D Object Pose Estimation by Learning RGB-D Features
    Tian, Meng
    Pan, Liang
    Ang, Marcelo H., Jr.
    Lee, Gim Hee
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 6218 - 6224
  • [2] HomebrewedDB: RGB-D Dataset for 6D Pose Estimation of 3D Objects
    Kaskman, Roman
    Zakharov, Sergey
    Shugurov, Ivan
    Ilic, Slobodan
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 2767 - 2776
  • [3] A Comprehensive Review on 3D Object Detection and 6D Pose Estimation With Deep Learning
    Hoque, Sabera
    Arafat, Md. Yasir
    Xu, Shuxiang
    Maiti, Ananda
    Wei, Yuchen
    IEEE ACCESS, 2021, 9 : 143746 - 143770
  • [4] Holistic and local patch framework for 6D object pose estimation in RGB-D images
    Zhang, Haoruo
    Cao, Qixin
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2019, 180 : 59 - 73
  • [5] 3D Object Detection and 6D Pose Estimation Using RGB-D Images and Mask R-CNN
    Tran, Van Luan
    Lin, Huei-Yung
    2020 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2020,
  • [6] Texture-less object detection and 6D pose estimation in RGB-D images
    Zhang, Haoruo
    Cao, Qixin
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2017, 95 : 64 - 79
  • [7] A RGB-D feature fusion network for occluded object 6D pose estimation
    Song, Yiwei
    Tang, Chunhui
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (8-9) : 6309 - 6319
  • [8] A 3D Object Detection and Pose Estimation Pipeline Using RGB-D Images
    He, Ruotao
    Rojas, Juan
    Guan, Yisheng
    2017 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (IEEE ROBIO 2017), 2017, : 1527 - 1532
  • [9] Learning Analysis-by-Synthesis for 6D Pose Estimation in RGB-D Images
    Krull, Alexander
    Brachmann, Eric
    Michel, Frank
    Yang, Michael Ying
    Gumhold, Stefan
    Rother, Carsten
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 954 - 962
  • [10] Learning 6D Object Pose Estimation Using 3D Object Coordinates
    Brachmann, Eric
    Krull, Alexander
    Michel, Frank
    Gumhold, Stefan
    Shotton, Jamie
    Rother, Carsten
    COMPUTER VISION - ECCV 2014, PT II, 2014, 8690 : 536 - 551