Pitt's Inequality and Logarithmic Uncertainty Principle for the Clifford-Fourier Transform

被引:3
|
作者
Li, Shanshan [1 ]
Fei, Minggang [2 ]
机构
[1] SW Minzu Univ, Sch Math, Chengdu 610041, Peoples R China
[2] Univ Elect Sci & Technology China, Sch Math Sci, Chengdu 611731, Peoples R China
关键词
Pitt's inequality; Logarithmic uncertainty principle; Clifford-Fourier transform; Clifford analysis; THEOREMS;
D O I
10.1007/s00006-022-01244-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the sharp Pitt's inequality for a generalized Clifford-Fourier transform which is given by a similar operator exponential as the classical Fourier transform but containing generators of Lie superalgebra. As an application, the Beckner's logarithmic uncertainty principle for the Clifford-Fourier transform is established.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] Beurling's theorem for the Clifford-Fourier transform
    Jday, Rim
    el Kamel, Jamel
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (08) : 9694 - 9707
  • [12] The Fractional Clifford-Fourier Transform
    De Bie, Hendrik
    De Schepper, Nele
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2012, 6 (05) : 1047 - 1067
  • [13] The Fractional Clifford-Fourier Transform
    Hendrik De Bie
    Nele De Schepper
    Complex Analysis and Operator Theory, 2012, 6 : 1047 - 1067
  • [14] Pitt's Inequalities and Uncertainty Principle for Generalized Fourier Transform
    Gorbachev, Dmitry V.
    Ivanov, Valerii I.
    Tikhonov, Sergey Yu.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016, 2016 (23) : 7179 - 7200
  • [15] Sharp Pitt inequality and logarithmic uncertainty principle for Dunkl transform in L2
    Gorbachev, D. V.
    Ivanov, V. I.
    Tikhonov, S. Yu.
    JOURNAL OF APPROXIMATION THEORY, 2016, 202 : 109 - 118
  • [16] Properties of the fractional Clifford-Fourier transform
    Shi, Haipan
    Yang, Heju
    Qiao, Yuying
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2023, 34 (12) : 931 - 946
  • [17] Clifford-Fourier transform on hyperbolic space
    Lian, Pan
    Bao, Gejun
    De Bie, Hendrik
    Constales, Denis
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (10) : 3666 - 3675
  • [18] Clifford-Fourier Transform for Color Image Processing
    Batard, Thomas
    Berthier, Michel
    Saint-Jean, Christophe
    GEOMETRIC ALGEBRA COMPUTING: IN ENGINEERING AND COMPUTER SCIENCE, 2010, : 135 - 162
  • [19] Octonion Special Affine Fourier Transform: Pitt's Inequality and the Uncertainty Principles
    Bhat, Mohammad Younus
    Dar, Aamir Hamid
    Zayed, Mohra
    Araci, Serkan
    FRACTAL AND FRACTIONAL, 2023, 7 (05)
  • [20] Fractional Clifford-Fourier Transform and its Application
    Shi, Haipan
    Yang, Heju
    Li, Zunfeng
    Qiao, Yuying
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2020, 30 (05)