Fractional Clifford-Fourier Transform and its Application

被引:8
|
作者
Shi, Haipan [1 ]
Yang, Heju [2 ]
Li, Zunfeng [2 ]
Qiao, Yuying [1 ]
机构
[1] Hebei Normal Univ, Sch Math Sci, Shijiazhuang 050024, Hebei, Peoples R China
[2] Hebei Univ Sci & Technol, Coll Sci, Shijiazhuang 050018, Hebei, Peoples R China
基金
美国国家科学基金会;
关键词
Clifford analysis; Fractional Fourier transform (FrFT); Clifford-Fourier transform (CFT); Fractional Clifford-Fourier transform (FrCFT);
D O I
10.1007/s00006-020-01094-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a version of the fractional Clifford-Fourier transform (FrCFT) and study its several properties and applications to partial differential equations in Clifford analysis. First, we give the definition of the FrCFT and its inverse transform in the form of integral. Then, we discuss the relationship between the FrCFT and the Clifford-Fourier transform (CFT) and give some properties of the FrCFT, including Plancherel identity, differential properties, etc. Especially we give a new form of differential formula. Finally, we give an application of these results to a partial differential equation.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] The Fractional Clifford-Fourier Transform
    De Bie, Hendrik
    De Schepper, Nele
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2012, 6 (05) : 1047 - 1067
  • [2] The Fractional Clifford-Fourier Transform
    Hendrik De Bie
    Nele De Schepper
    [J]. Complex Analysis and Operator Theory, 2012, 6 : 1047 - 1067
  • [3] Properties of the fractional Clifford-Fourier transform
    Shi, Haipan
    Yang, Heju
    Qiao, Yuying
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2023, 34 (12) : 931 - 946
  • [4] Uncertainty principles of the fractional Clifford-Fourier transform
    Shi, Haipan
    Gao, Long
    Xie, Yonghong
    Qiao, Yuying
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (15) : 16105 - 16125
  • [5] The Clifford-Fourier transform
    Brackx, F
    De Schepper, N
    Sommen, F
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2005, 11 (06) : 669 - 681
  • [6] On the Clifford-Fourier Transform
    De Bie, Hendrik
    Xu, Yuan
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (22) : 5123 - 5163
  • [7] The Clifford-Fourier Transform
    Fred Brackx
    Nele De Schepper
    Frank Sommen
    [J]. Journal of Fourier Analysis and Applications, 2005, 11 : 669 - 681
  • [8] Spectrums of Functions Associated to the Fractional Clifford-Fourier Transform
    Li, Shanshan
    Leng, Jinsong
    Fei, Minggang
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2019, 30 (01)
  • [9] Fractional Clifford–Fourier Transform and its Application
    Haipan Shi
    Heju Yang
    Zunfeng Li
    Yuying Qiao
    [J]. Advances in Applied Clifford Algebras, 2020, 30
  • [10] The Fractional Clifford-Fourier Kernel
    Craddock, M. J.
    Hogan, J. A.
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2013, 19 (04) : 683 - 711