Pitt's Inequality and Logarithmic Uncertainty Principle for the Clifford-Fourier Transform

被引:3
|
作者
Li, Shanshan [1 ]
Fei, Minggang [2 ]
机构
[1] SW Minzu Univ, Sch Math, Chengdu 610041, Peoples R China
[2] Univ Elect Sci & Technology China, Sch Math Sci, Chengdu 611731, Peoples R China
关键词
Pitt's inequality; Logarithmic uncertainty principle; Clifford-Fourier transform; Clifford analysis; THEOREMS;
D O I
10.1007/s00006-022-01244-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the sharp Pitt's inequality for a generalized Clifford-Fourier transform which is given by a similar operator exponential as the classical Fourier transform but containing generators of Lie superalgebra. As an application, the Beckner's logarithmic uncertainty principle for the Clifford-Fourier transform is established.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Clifford Wavelet Transform and the Uncertainty Principle
    Banouh, Hicham
    Ben Mabrouk, Anouar
    Kesri, Mhamed
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2019, 29 (05)
  • [32] Clifford Wavelet Transform and the Uncertainty Principle
    Hicham Banouh
    Anouar Ben Mabrouk
    Mhamed Kesri
    Advances in Applied Clifford Algebras, 2019, 29
  • [33] Logarithmic uncertainty principle for the Hankel transform
    Omri, S.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2011, 22 (09) : 655 - 670
  • [34] Correction to: Clifford Wavelet Transform and the Uncertainty Principle
    Hicham Banouh
    Anouar Ben Mabrouk
    Mhamed Kesri
    Advances in Applied Clifford Algebras, 2020, 30
  • [35] An uncertainty principle for quaternion Fourier transform
    Bahri, Mawardi
    Hitzer, Eckhard S. M.
    Hayashi, Akihisa
    Ashino, Ryuichi
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (09) : 2398 - 2410
  • [36] Uncertainty principle for the quaternion Fourier transform
    Lian, Pan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 467 (02) : 1258 - 1269
  • [37] The uncertainty principle for the octonion Fourier transform
    Zayed, Mohra
    El Haoui, Youssef
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (02) : 2651 - 2666
  • [38] Donoho–Stark’s uncertainty principle for the quaternion Fourier transform
    A. Abouelaz
    A. Achak
    R. Daher
    N. Safouane
    Boletín de la Sociedad Matemática Mexicana, 2020, 26 : 587 - 597
  • [39] Uncertainty principle for clifford geometric algebras Cln,0, n=3 (mod4) based on Clifford Fourier transform
    Hitzer, Eckhard S. M.
    Mawardi, Bahri
    WAVELET ANALYSIS AND APPLICATIONS, 2007, : 47 - +
  • [40] LOGARITHMIC UNCERTAINTY PRINCIPLE FOR QUATERNION LINEAR CANONICAL TRANSFORM
    Bahri, Mawardi
    Ashino, Ryuichi
    PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR), 2016, : 140 - 145