Pitt's Inequality and Logarithmic Uncertainty Principle for the Clifford-Fourier Transform

被引:3
|
作者
Li, Shanshan [1 ]
Fei, Minggang [2 ]
机构
[1] SW Minzu Univ, Sch Math, Chengdu 610041, Peoples R China
[2] Univ Elect Sci & Technology China, Sch Math Sci, Chengdu 611731, Peoples R China
关键词
Pitt's inequality; Logarithmic uncertainty principle; Clifford-Fourier transform; Clifford analysis; THEOREMS;
D O I
10.1007/s00006-022-01244-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the sharp Pitt's inequality for a generalized Clifford-Fourier transform which is given by a similar operator exponential as the classical Fourier transform but containing generators of Lie superalgebra. As an application, the Beckner's logarithmic uncertainty principle for the Clifford-Fourier transform is established.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] The two-dimensional Clifford-Fourier transform
    Brackx, Fred
    De Schepper, Nele
    Sommen, Frank
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2006, 26 (1-2) : 5 - 18
  • [22] The Two-Dimensional Clifford-Fourier Transform
    Fred Brackx
    Nele De Schepper
    Frank Sommen
    Journal of Mathematical Imaging and Vision, 2006, 26 : 5 - 18
  • [23] The Clifford-Fourier Transform Fo and Monogenic Extensions
    Bezanilla Lopez, Arnoldo
    Sanchez, Omar Leon
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2011, 21 (04) : 757 - 772
  • [24] Clifford-Fourier Transform and Spinor Representation of Images
    Batard, Thomas
    Berthier, Michel
    QUATERNION AND CLIFFORD FOURIER TRANSFORMS AND WAVELETS, 2013, : 177 - 195
  • [25] Analyzing Real Vector Fields with Clifford Convolution and Clifford-Fourier Transform
    Reich, Wieland
    Scheuermann, Gerik
    GEOMETRIC ALGEBRA COMPUTING: IN ENGINEERING AND COMPUTER SCIENCE, 2010, : 121 - 133
  • [26] Spectrums of Functions Associated to the Fractional Clifford-Fourier Transform
    Li, Shanshan
    Leng, Jinsong
    Fei, Minggang
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2019, 30 (01)
  • [27] The Balian-Low Theorem for the Windowed Clifford-Fourier Transform
    Fu, Yingxiong
    Kahler, Uwe
    Cerejeiras, Paula
    QUATERNION AND CLIFFORD FOURIER TRANSFORMS AND WAVELETS, 2013, : 299 - 319
  • [28] The kernel of the generalized Clifford-Fourier transform and its generating function
    Lian, Pan
    Bao, Gejun
    De Bie, Hendrik
    Constales, Denis
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2017, 62 (02) : 214 - 229
  • [29] Paley-Wiener-Type theorems for the Clifford-Fourier transform
    Li, Shanshan
    Leng, Jinsong
    Fei, Minggang
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (18) : 6101 - 6113
  • [30] Uncertainty Principles for the Clifford–Fourier Transform
    Jamel El Kamel
    Rim Jday
    Advances in Applied Clifford Algebras, 2017, 27 : 2429 - 2443