Paley-Wiener-Type theorems for the Clifford-Fourier transform

被引:11
|
作者
Li, Shanshan [1 ]
Leng, Jinsong [1 ]
Fei, Minggang [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
关键词
Clifford analysis; Clifford-Fourier transform; Paley-Wiener theorem;
D O I
10.1002/mma.5707
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the framework of Clifford analysis, we consider the Paley-Wiener type theorems for a generalized Clifford-Fourier transform. This Clifford-Fourier transform is given by a similar operator exponential as the classical Fourier transform but containing generators of Lie superalgebra.
引用
收藏
页码:6101 / 6113
页数:13
相关论文
共 50 条
  • [1] Enhanced Laplace transform and holomorphic Paley-Wiener-type theorems
    Dubussy, Christophe
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2019, 142 : 181 - 209
  • [2] Real Paley-Wiener theorems for the Clifford Fourier transform
    Fu YingXiong
    Li LuoQing
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (11) : 2381 - 2392
  • [3] Real Paley-Wiener theorems for the Clifford Fourier transform
    YingXiong Fu
    LuoQing Li
    Science China Mathematics, 2014, 57 : 2381 - 2392
  • [4] Real Paley-Wiener theorems for the Clifford Fourier transform
    FU YingXiong
    LI LuoQing
    Science China Mathematics, 2014, 57 (11) : 2381 - 2392
  • [5] Paley-Wiener-type theorems for a class of integral transforms
    Tuan, VK
    Zayed, AI
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 266 (01) : 200 - 226
  • [6] The Clifford-Fourier transform
    Brackx, F
    De Schepper, N
    Sommen, F
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2005, 11 (06) : 669 - 681
  • [7] On the Clifford-Fourier Transform
    De Bie, Hendrik
    Xu, Yuan
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (22) : 5123 - 5163
  • [8] The Clifford-Fourier Transform
    Fred Brackx
    Nele De Schepper
    Frank Sommen
    Journal of Fourier Analysis and Applications, 2005, 11 : 669 - 681
  • [9] The Fractional Clifford-Fourier Transform
    De Bie, Hendrik
    De Schepper, Nele
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2012, 6 (05) : 1047 - 1067
  • [10] Paley-Wiener-Type Theorems Associated to the Laplace-Bessel Operator
    Fei, Minggang
    Hu, Yu
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2023, 17 (06)