Pitt's Inequality and Logarithmic Uncertainty Principle for the Clifford-Fourier Transform

被引:3
|
作者
Li, Shanshan [1 ]
Fei, Minggang [2 ]
机构
[1] SW Minzu Univ, Sch Math, Chengdu 610041, Peoples R China
[2] Univ Elect Sci & Technology China, Sch Math Sci, Chengdu 611731, Peoples R China
关键词
Pitt's inequality; Logarithmic uncertainty principle; Clifford-Fourier transform; Clifford analysis; THEOREMS;
D O I
10.1007/s00006-022-01244-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the sharp Pitt's inequality for a generalized Clifford-Fourier transform which is given by a similar operator exponential as the classical Fourier transform but containing generators of Lie superalgebra. As an application, the Beckner's logarithmic uncertainty principle for the Clifford-Fourier transform is established.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Directional Uncertainty Principle for Quaternion Fourier Transform
    Hitzer, Eckhard M. S.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2010, 20 (02) : 271 - 284
  • [42] On uncertainty principle of the local polynomial Fourier transform
    Li, Xiumei
    Bi, Guoan
    Li, Shenghong
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2012,
  • [43] Directional Uncertainty Principle for Quaternion Fourier Transform
    Eckhard M. S. Hitzer
    Advances in Applied Clifford Algebras, 2010, 20 : 271 - 284
  • [44] On uncertainty principle of the local polynomial Fourier transform
    Xiumei Li
    Guoan Bi
    Shenghong Li
    EURASIP Journal on Advances in Signal Processing, 2012
  • [45] Donoho-Stark's uncertainty principle for the quaternion Fourier transform
    Abouelaz, A.
    Achak, A.
    Daher, R.
    Safouane, N.
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2020, 26 (02): : 587 - 597
  • [46] UNCERTAINTY PRINCIPLE FOR WEYL TRANSFORM AND FOURIER-WIGNER TRANSFORM
    Samanta, Amit
    Sarkar, Santanu
    COLLOQUIUM MATHEMATICUM, 2023, 174 (02) : 217 - 227
  • [47] Stability of the logarithmic Sobolev inequality and uncertainty principle for the Tsallis entropy
    Suguro, Takeshi
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2025, 250
  • [48] Clifford Fourier Transformation and Uncertainty Principle for the Clifford Geometric Algebra Cl3,0
    Bahri Mawardi
    Eckhard MS Hitzer
    Advances in Applied Clifford Algebras, 2006, 16 : 41 - 61
  • [49] Clifford Fourier transformation and uncertainty principle for the Clifford geometric algebra Cl3,0
    Mawardi, Bahri
    Hitzer, Eckhard M. S.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2006, 16 (01) : 41 - 61
  • [50] Wigner-Ville Distribution Associated with Clifford Geometric Algebra Cln,0, n=3(mod 4) Based on Clifford-Fourier Transform
    Bhat, Mohammad Younus
    Rafiq, Shahbaz
    Zayed, Mohra
    SYMMETRY-BASEL, 2023, 15 (07):