Clifford-Fourier transform on hyperbolic space

被引:0
|
作者
Lian, Pan [1 ,2 ]
Bao, Gejun [1 ]
De Bie, Hendrik [2 ]
Constales, Denis [2 ]
机构
[1] Harbin Inst Technol, Dept Math, West Da Zhi St 92, Harbin 150001, Peoples R China
[2] Univ Ghent, Dept Math Anal, Fac Engn & Architecture, Galglaan 2, B-9000 Ghent, Belgium
关键词
Helgason-Fourier transform; hyperbolic space; fractional calculus; generating function;
D O I
10.1002/mma.4253
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a new generalization of the Helgason-Fourier transform using the angular Dirac operator on both the hyperboloid and unit ball models. The explicit integral kernels of even dimension are derived. Furthermore, we establish the formal generating function of the even dimensional kernels. In the computations, fractional integration plays a key unifying role. Copyright (c) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:3666 / 3675
页数:10
相关论文
共 50 条
  • [1] The Clifford-Fourier transform
    Brackx, F
    De Schepper, N
    Sommen, F
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2005, 11 (06) : 669 - 681
  • [2] On the Clifford-Fourier Transform
    De Bie, Hendrik
    Xu, Yuan
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (22) : 5123 - 5163
  • [3] The Clifford-Fourier Transform
    Fred Brackx
    Nele De Schepper
    Frank Sommen
    Journal of Fourier Analysis and Applications, 2005, 11 : 669 - 681
  • [4] The Fractional Clifford-Fourier Transform
    De Bie, Hendrik
    De Schepper, Nele
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2012, 6 (05) : 1047 - 1067
  • [5] The Fractional Clifford-Fourier Transform
    Hendrik De Bie
    Nele De Schepper
    Complex Analysis and Operator Theory, 2012, 6 : 1047 - 1067
  • [6] Properties of the fractional Clifford-Fourier transform
    Shi, Haipan
    Yang, Heju
    Qiao, Yuying
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2023, 34 (12) : 931 - 946
  • [7] Uncertainty Principles for the Clifford-Fourier Transform
    El Kamel, Jamel
    Jday, Rim
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2017, 27 (03) : 2429 - 2443
  • [8] Clifford-Fourier Transform for Color Image Processing
    Batard, Thomas
    Berthier, Michel
    Saint-Jean, Christophe
    GEOMETRIC ALGEBRA COMPUTING: IN ENGINEERING AND COMPUTER SCIENCE, 2010, : 135 - 162
  • [9] Beurling's theorem for the Clifford-Fourier transform
    Jday, Rim
    el Kamel, Jamel
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (08) : 9694 - 9707
  • [10] Fractional Clifford-Fourier Transform and its Application
    Shi, Haipan
    Yang, Heju
    Li, Zunfeng
    Qiao, Yuying
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2020, 30 (05)