Clifford-Fourier transform on hyperbolic space

被引:0
|
作者
Lian, Pan [1 ,2 ]
Bao, Gejun [1 ]
De Bie, Hendrik [2 ]
Constales, Denis [2 ]
机构
[1] Harbin Inst Technol, Dept Math, West Da Zhi St 92, Harbin 150001, Peoples R China
[2] Univ Ghent, Dept Math Anal, Fac Engn & Architecture, Galglaan 2, B-9000 Ghent, Belgium
关键词
Helgason-Fourier transform; hyperbolic space; fractional calculus; generating function;
D O I
10.1002/mma.4253
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a new generalization of the Helgason-Fourier transform using the angular Dirac operator on both the hyperboloid and unit ball models. The explicit integral kernels of even dimension are derived. Furthermore, we establish the formal generating function of the even dimensional kernels. In the computations, fractional integration plays a key unifying role. Copyright (c) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:3666 / 3675
页数:10
相关论文
共 50 条
  • [21] The Class of Clifford-Fourier Transforms
    De Bie, Hendrik
    De Schepper, Nele
    Sommen, Frank
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2011, 17 (06) : 1198 - 1231
  • [22] The Class of Clifford-Fourier Transforms
    Hendrik De Bie
    Nele De Schepper
    Frank Sommen
    Journal of Fourier Analysis and Applications, 2011, 17 : 1198 - 1231
  • [23] The Fractional Clifford-Fourier Kernel
    M. J. Craddock
    J. A. Hogan
    Journal of Fourier Analysis and Applications, 2013, 19 : 683 - 711
  • [24] The Fractional Clifford-Fourier Kernel
    Craddock, M. J.
    Hogan, J. A.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2013, 19 (04) : 683 - 711
  • [25] Pitt's Inequality and Logarithmic Uncertainty Principle for the Clifford-Fourier Transform
    Li, Shanshan
    Fei, Minggang
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2023, 33 (01)
  • [26] The Clifford-Fourier integral kernel in even dimensional Euclidean space
    Brackx, Fred
    De Schepper, Nele
    Sommen, Frank
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 365 (02) : 718 - 728
  • [27] Pitt’s Inequality and Logarithmic Uncertainty Principle for the Clifford-Fourier Transform
    Shanshan Li
    Minggang Fei
    Advances in Applied Clifford Algebras, 2023, 33
  • [28] A new construction of the Clifford-Fourier kernel
    Constales, Denis
    De Bie, Hendrik
    Lian, Pan
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2017, 23 (02) : 462 - 483
  • [29] A new construction of the Clifford-Fourier kernel
    Denis Constales
    Hendrik De Bie
    Pan Lian
    Journal of Fourier Analysis and Applications, 2017, 23 : 462 - 483
  • [30] The bounds of the odd dimensional Clifford-Fourier kernels
    Lian, Pan
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2022, 201 (03) : 1213 - 1228