A new construction of the Clifford-Fourier kernel

被引:0
|
作者
Denis Constales
Hendrik De Bie
Pan Lian
机构
[1] Faculty of Engineering and Architecture – Ghent University,Department of Mathematical Analysis
[2] Harbin Institute of Technology,Department of Mathematics
关键词
Clifford-Fourier transform; Laplace transform; Bessel function; Plane wave decomposition; 42B10; 30G35; 15A66; 44A10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we develop a new method based on the Laplace transform to study the Clifford-Fourier transform. First, the kernel of the Clifford-Fourier transform in the Laplace domain is obtained. When the dimension is even, the inverse Laplace transform may be computed and we obtain the explicit expression for the kernel as a finite sum of Bessel functions. We equally obtain the plane wave decomposition and find new integral representations for the kernel in all dimensions. Finally we define and compute the formal generating function for the even dimensional kernels.
引用
收藏
页码:462 / 483
页数:21
相关论文
共 50 条
  • [1] A new construction of the Clifford-Fourier kernel
    Constales, Denis
    De Bie, Hendrik
    Lian, Pan
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2017, 23 (02) : 462 - 483
  • [2] The Fractional Clifford-Fourier Kernel
    M. J. Craddock
    J. A. Hogan
    [J]. Journal of Fourier Analysis and Applications, 2013, 19 : 683 - 711
  • [3] The Fractional Clifford-Fourier Kernel
    Craddock, M. J.
    Hogan, J. A.
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2013, 19 (04) : 683 - 711
  • [4] The Clifford-Fourier transform
    Brackx, F
    De Schepper, N
    Sommen, F
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2005, 11 (06) : 669 - 681
  • [5] On the Clifford-Fourier Transform
    De Bie, Hendrik
    Xu, Yuan
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (22) : 5123 - 5163
  • [6] The kernel of the generalized Clifford-Fourier transform and its generating function
    Lian, Pan
    Bao, Gejun
    De Bie, Hendrik
    Constales, Denis
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2017, 62 (02) : 214 - 229
  • [7] The Clifford-Fourier integral kernel in even dimensional Euclidean space
    Brackx, Fred
    De Schepper, Nele
    Sommen, Frank
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 365 (02) : 718 - 728
  • [8] The Clifford-Fourier Transform
    Fred Brackx
    Nele De Schepper
    Frank Sommen
    [J]. Journal of Fourier Analysis and Applications, 2005, 11 : 669 - 681
  • [9] The Fractional Clifford-Fourier Transform
    De Bie, Hendrik
    De Schepper, Nele
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2012, 6 (05) : 1047 - 1067
  • [10] The Class of Clifford-Fourier Transforms
    De Bie, Hendrik
    De Schepper, Nele
    Sommen, Frank
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2011, 17 (06) : 1198 - 1231