Analysis of Fractional Order-Adaptive Systems Represented by Error Model 1 Using a Fractional-Order Gradient Approach

被引:0
|
作者
Sanchez-Rivero, Maibeth [1 ]
Duarte-Mermoud, Manuel A. [2 ]
Travieso-Torres, Juan Carlos [3 ]
Orchard, Marcos E. [1 ]
Ceballos-Benavides, Gustavo [2 ]
机构
[1] Univ Chile, Fac Ciencias Fis & Matemat, Dept Elect Engn, Av Tupper 2007, Santiago 8370451, Reg Metropolita, Chile
[2] Univ Cent Chile, Fac Ingn & Arquitectura, Ave Santa Isabel 1186, Santiago 8330601, Reg Metropolita, Chile
[3] Univ Santiago Chile, Fac Tecnol, Dept Tecnol Ind, Ave El Belloto 3735, Santiago 9170125, Reg Metropolita, Chile
关键词
fractional-order calculus (FOC); fractional-order adaptive control (FOAC); steepest descend gradient (SDG); fractional-order steepest descend gradient (FOSDG); LYAPUNOV FUNCTIONS; NONLINEAR-SYSTEMS; STABILITY;
D O I
10.3390/math12203212
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In adaptive control, error models use system output error and adaptive laws to update controller parameters for control or identification tasks. Fractional-order calculus, involving non-integer-order derivatives and integrals, is increasingly important for modeling, estimation, and control due to its ability to generalize classical methods and offer improved robustness to disturbances. This paper addresses the gap in the literature where fractional-order gradient methods have not yet been extensively applied in identification and adaptive control schemes. We introduce a fractional-order error model with fractional-order gradient (FOEM1-FG), which integrates fractional gradient operators based on the Caputo fractional derivative. By using theoretical analysis and simulations, we confirm that FOEM1-FG maintains stability and ensures bounded output errors across a variety of input signals. Notably, the fractional gradient's performance improves as the order, beta, increases with beta>1, leading to faster convergence. Compared to existing integer-order methods, the proposed approach provides a more flexible and efficient solution in adaptive identification and control schemes. Our results show that FOEM1-FG offers superior stability and convergence characteristics, contributing new insights to the field of fractional calculus in adaptive systems.
引用
收藏
页数:16
相关论文
共 50 条
  • [11] Adaptive Control for Fractional-order Interconnected Systems
    Liang, Bingyun
    Zheng, Shiqi
    Yang, Zichao
    Liu, Feng
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 2582 - 2587
  • [12] CHAOS AND ADAPTIVE SYNCHRONIZATIONS IN FRACTIONAL-ORDER SYSTEMS
    Liu, Xiaojun
    Hong, Ling
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (11):
  • [13] Adaptive synchronisation of fractional-order chaotic systems
    张若洵
    杨世平
    Chinese Physics B, 2010, (02) : 161 - 167
  • [14] Adaptive synchronisation of fractional-order chaotic systems
    Zhang Ruo-Xun
    Yang Shi-Ping
    CHINESE PHYSICS B, 2010, 19 (02)
  • [15] Order-Adaptive Fractional-ORDER Moment-Based Estimation of Shape Parameter of K-distribution
    Li, Zhi-Yuan
    Shui, Peng-Lang
    Zou, Peng-Jia
    2019 IEEE 4TH INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING (ICSIP 2019), 2019, : 597 - 600
  • [16] One Adaptive Synchronization Approach for Fractional-Order Chaotic System with Fractional-Order 1 < q < 2
    Zhou, Ping
    Bai, Rongji
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [17] ANALYSIS OF FRACTIONAL ORDER ERROR MODELS IN ADAPTIVE SYSTEMS: MIXED ORDER CASES
    Aguila-Camacho, N.
    Gallegos, J.
    Duarte-Mermoud, M. A.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2019, 22 (04) : 1113 - 1132
  • [18] Analysis of Fractional Order Error Models in Adaptive Systems: Mixed Order Cases
    N. Aguila-Camacho
    J. Gallegos
    M. A. Duarte-Mermoud
    Fractional Calculus and Applied Analysis, 2019, 22 : 1113 - 1132
  • [19] Suppressing chaos for a class of fractional-order chaotic systems by adaptive integer-order and fractional-order feedback control
    Li, Ruihong
    Li, Wei
    OPTIK, 2015, 126 (21): : 2965 - 2973
  • [20] An Adaptive Fractional-Order Controller
    Petras, Ivo
    PROCEEDINGS OF THE 2013 14TH INTERNATIONAL CARPATHIAN CONTROL CONFERENCE (ICCC), 2013, : 297 - 301