Analysis of Fractional Order-Adaptive Systems Represented by Error Model 1 Using a Fractional-Order Gradient Approach

被引:0
|
作者
Sanchez-Rivero, Maibeth [1 ]
Duarte-Mermoud, Manuel A. [2 ]
Travieso-Torres, Juan Carlos [3 ]
Orchard, Marcos E. [1 ]
Ceballos-Benavides, Gustavo [2 ]
机构
[1] Univ Chile, Fac Ciencias Fis & Matemat, Dept Elect Engn, Av Tupper 2007, Santiago 8370451, Reg Metropolita, Chile
[2] Univ Cent Chile, Fac Ingn & Arquitectura, Ave Santa Isabel 1186, Santiago 8330601, Reg Metropolita, Chile
[3] Univ Santiago Chile, Fac Tecnol, Dept Tecnol Ind, Ave El Belloto 3735, Santiago 9170125, Reg Metropolita, Chile
关键词
fractional-order calculus (FOC); fractional-order adaptive control (FOAC); steepest descend gradient (SDG); fractional-order steepest descend gradient (FOSDG); LYAPUNOV FUNCTIONS; NONLINEAR-SYSTEMS; STABILITY;
D O I
10.3390/math12203212
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In adaptive control, error models use system output error and adaptive laws to update controller parameters for control or identification tasks. Fractional-order calculus, involving non-integer-order derivatives and integrals, is increasingly important for modeling, estimation, and control due to its ability to generalize classical methods and offer improved robustness to disturbances. This paper addresses the gap in the literature where fractional-order gradient methods have not yet been extensively applied in identification and adaptive control schemes. We introduce a fractional-order error model with fractional-order gradient (FOEM1-FG), which integrates fractional gradient operators based on the Caputo fractional derivative. By using theoretical analysis and simulations, we confirm that FOEM1-FG maintains stability and ensures bounded output errors across a variety of input signals. Notably, the fractional gradient's performance improves as the order, beta, increases with beta>1, leading to faster convergence. Compared to existing integer-order methods, the proposed approach provides a more flexible and efficient solution in adaptive identification and control schemes. Our results show that FOEM1-FG offers superior stability and convergence characteristics, contributing new insights to the field of fractional calculus in adaptive systems.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] FRACTIONAL-ORDER ITERATIVE LEARNING CONTROL FOR FRACTIONAL-ORDER LINEAR SYSTEMS
    Li, Yan
    Chen, YangQuan
    Ahn, Hyo-Sung
    ASIAN JOURNAL OF CONTROL, 2011, 13 (01) : 54 - 63
  • [22] DESIGN OF UNKNOWN INPUT FRACTIONAL-ORDER OBSERVERS FOR FRACTIONAL-ORDER SYSTEMS
    N'Doye, Ibrahima
    Darouach, Mohamed
    Voos, Holger
    Zasadzinski, Michel
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2013, 23 (03) : 491 - 500
  • [23] Synchronization of Fractional-Order Hyperchaotic Systems via Fractional-Order Controllers
    Li, Tianzeng
    Wang, Yu
    Yang, Yong
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2014, 2014
  • [24] Fractional-Order Sliding Mode Synchronization for Fractional-Order Chaotic Systems
    Wang, Chenhui
    ADVANCES IN MATHEMATICAL PHYSICS, 2018, 2018
  • [26] Stabilization of fractional-order unstable delay systems by fractional-order controllers
    Kheirizad, Iraj
    Jalali, Ali Akbar
    Khandani, Khosro
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2012, 226 (I9) : 1166 - 1173
  • [27] Fractional-Order Adaptive Backstepping Control of a Noncommensurate Fractional-Order Ferroresonance System
    Wang, Yan
    Liu, Ling
    Liu, Chongxin
    Zhu, Ziwei
    Sun, Zhenquan
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2018, 2018
  • [28] The multi-model approach for fractional-order systems modelling
    Talmoudi, Samia
    Lahmari, Moufida
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2018, 40 (01) : 331 - 340
  • [29] An algorithm for stabilization of fractional-order time delay systems using fractional-order PID controllers
    Hamamci, Serdar Ethem
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2007, 52 (10) : 1964 - 1969
  • [30] Optimal Control for Fractional-Order Nonlinear Systems Using Fractional-Order Online Policy Iteration
    Kong, Jie
    Zhao, Bo
    Chinese Control Conference, CCC, 2024, : 2558 - 2563