Analysis of Fractional Order-Adaptive Systems Represented by Error Model 1 Using a Fractional-Order Gradient Approach

被引:0
|
作者
Sanchez-Rivero, Maibeth [1 ]
Duarte-Mermoud, Manuel A. [2 ]
Travieso-Torres, Juan Carlos [3 ]
Orchard, Marcos E. [1 ]
Ceballos-Benavides, Gustavo [2 ]
机构
[1] Univ Chile, Fac Ciencias Fis & Matemat, Dept Elect Engn, Av Tupper 2007, Santiago 8370451, Reg Metropolita, Chile
[2] Univ Cent Chile, Fac Ingn & Arquitectura, Ave Santa Isabel 1186, Santiago 8330601, Reg Metropolita, Chile
[3] Univ Santiago Chile, Fac Tecnol, Dept Tecnol Ind, Ave El Belloto 3735, Santiago 9170125, Reg Metropolita, Chile
关键词
fractional-order calculus (FOC); fractional-order adaptive control (FOAC); steepest descend gradient (SDG); fractional-order steepest descend gradient (FOSDG); LYAPUNOV FUNCTIONS; NONLINEAR-SYSTEMS; STABILITY;
D O I
10.3390/math12203212
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In adaptive control, error models use system output error and adaptive laws to update controller parameters for control or identification tasks. Fractional-order calculus, involving non-integer-order derivatives and integrals, is increasingly important for modeling, estimation, and control due to its ability to generalize classical methods and offer improved robustness to disturbances. This paper addresses the gap in the literature where fractional-order gradient methods have not yet been extensively applied in identification and adaptive control schemes. We introduce a fractional-order error model with fractional-order gradient (FOEM1-FG), which integrates fractional gradient operators based on the Caputo fractional derivative. By using theoretical analysis and simulations, we confirm that FOEM1-FG maintains stability and ensures bounded output errors across a variety of input signals. Notably, the fractional gradient's performance improves as the order, beta, increases with beta>1, leading to faster convergence. Compared to existing integer-order methods, the proposed approach provides a more flexible and efficient solution in adaptive identification and control schemes. Our results show that FOEM1-FG offers superior stability and convergence characteristics, contributing new insights to the field of fractional calculus in adaptive systems.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Fractional-Order Nonlinear Disturbance Observer Based Control of Fractional-Order Systems
    Munoz-Vazquez, Aldo Jonathan
    Parra-Vega, Vicente
    Sanchez-Orta, Anand
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2018, 13 (07):
  • [42] Adaptive fractional-order Kalman filters for continuous-time nonlinear fractional-order systems with unknown parameters and fractional-orders
    Yang, Chuang
    Gao, Zhe
    Li, Xuanang
    Huang, Xiaomin
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2021, 52 (13) : 2777 - 2797
  • [43] Fractional-Order Circuits and Systems
    Elwakil, Ahmed
    Maundy, Brent
    Fortuna, Luigi
    Chen, Guanrong
    IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2013, 3 (03) : 297 - 300
  • [44] A fractional-order approach to cardiac rhythm analysis
    Templos-Hernandez, Diana J.
    Quezada-Tellez, Luis A.
    Gonzalez-Hernandez, Brian M.
    Rojas-Vite, Gerardo
    Pineda-Sanchez, Jose E.
    Fernandez-Anaya, Guillermo
    Rodriguez-Torres, Erika E.
    CHAOS SOLITONS & FRACTALS, 2021, 147 (147)
  • [45] Fractional-Order Learning Systems
    Talebi, Sayed Pouria
    Werner, Stefan
    Mandic, Danilo P.
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [46] Fractional-Order Memristive Systems
    Petras, Ivo
    Chen, YangQuan
    Coopmans, Calvin
    2009 IEEE CONFERENCE ON EMERGING TECHNOLOGIES & FACTORY AUTOMATION (EFTA 2009), 2009,
  • [47] Contraction analysis for fractional-order nonlinear systems
    Gonzalez-Olvera, Marcos A.
    Tang, Yu
    CHAOS SOLITONS & FRACTALS, 2018, 117 : 255 - 263
  • [48] Analysis of solution trajectories of fractional-order systems
    Patil, Madhuri
    Bhalekar, Sachin
    PRAMANA-JOURNAL OF PHYSICS, 2020, 94 (01):
  • [49] Analysis of solution trajectories of fractional-order systems
    Madhuri Patil
    Sachin Bhalekar
    Pramana, 2020, 94
  • [50] Fractional-Order Traveling Wave Approximations for a Fractional-Order Neural Field Model
    Gonzalez-Ramirez, Laura R.
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2022, 16