Analysis of solution trajectories of fractional-order systems

被引:0
|
作者
Madhuri Patil
Sachin Bhalekar
机构
[1] Shivaji University,Department of Mathematics
[2] University of Hyderabad,School of mathematics and statistics
来源
Pramana | 2020年 / 94卷
关键词
Fractional derivative; Mittag–Leffler functions; Orthogonal transformation; Frenet apparatus; 05.45.–a; 02.40.–k; 45.30.+s;
D O I
暂无
中图分类号
学科分类号
摘要
The behavior of solution trajectories usually changes if we replace the classical derivative in a system with a fractional one. In this article, we throw light on the relation between two trajectories X(t) and Y(t) of such a system, where the initial point Y(0) is at some point X(t1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X(t_1)$$\end{document} of the trajectory X(t). In contrast with classical systems, these trajectories X and Y do not follow the same path. Further, we provide a Frenet apparatus for both trajectories in various cases and discuss their effect.
引用
收藏
相关论文
共 50 条
  • [1] Analysis of solution trajectories of fractional-order systems
    Patil, Madhuri
    Bhalekar, Sachin
    PRAMANA-JOURNAL OF PHYSICS, 2020, 94 (01):
  • [2] Fractional-order ADRC framework for fractional-order parallel systems
    Li, Zong-yang
    Wei, Yi-heng
    Wang, Jiachang
    Li, Aug
    Wang, Jianli
    Wang, Yong
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 1813 - 1818
  • [3] Contraction analysis for fractional-order nonlinear systems
    Gonzalez-Olvera, Marcos A.
    Tang, Yu
    CHAOS SOLITONS & FRACTALS, 2018, 117 : 255 - 263
  • [4] Stability analysis for σ-tempered fractional-order systems
    Ahmed, Hassen
    Ben Makhlouf, Abdellatif
    Gassara, Hamdi
    Mchiri, Lassaad
    Rhaima, Mohamed
    ASIAN JOURNAL OF CONTROL, 2025,
  • [5] Solution and dynamics analysis of a fractional-order hyperchaotic system
    He, Shaobo
    Sun, Kehui
    Wang, Huihai
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (11) : 2965 - 2973
  • [6] FRACTIONAL-ORDER ITERATIVE LEARNING CONTROL FOR FRACTIONAL-ORDER LINEAR SYSTEMS
    Li, Yan
    Chen, YangQuan
    Ahn, Hyo-Sung
    ASIAN JOURNAL OF CONTROL, 2011, 13 (01) : 54 - 63
  • [7] DESIGN OF UNKNOWN INPUT FRACTIONAL-ORDER OBSERVERS FOR FRACTIONAL-ORDER SYSTEMS
    N'Doye, Ibrahima
    Darouach, Mohamed
    Voos, Holger
    Zasadzinski, Michel
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2013, 23 (03) : 491 - 500
  • [8] Synchronization of Fractional-Order Hyperchaotic Systems via Fractional-Order Controllers
    Li, Tianzeng
    Wang, Yu
    Yang, Yong
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2014, 2014
  • [9] Singular points in the solution trajectories of fractional order dynamical systems
    Bhalekar, Sachin
    Patil, Madhuri
    CHAOS, 2018, 28 (11)
  • [10] Fractional-Order Sliding Mode Synchronization for Fractional-Order Chaotic Systems
    Wang, Chenhui
    ADVANCES IN MATHEMATICAL PHYSICS, 2018, 2018