Analysis of solution trajectories of fractional-order systems

被引:0
|
作者
Madhuri Patil
Sachin Bhalekar
机构
[1] Shivaji University,Department of Mathematics
[2] University of Hyderabad,School of mathematics and statistics
来源
Pramana | 2020年 / 94卷
关键词
Fractional derivative; Mittag–Leffler functions; Orthogonal transformation; Frenet apparatus; 05.45.–a; 02.40.–k; 45.30.+s;
D O I
暂无
中图分类号
学科分类号
摘要
The behavior of solution trajectories usually changes if we replace the classical derivative in a system with a fractional one. In this article, we throw light on the relation between two trajectories X(t) and Y(t) of such a system, where the initial point Y(0) is at some point X(t1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X(t_1)$$\end{document} of the trajectory X(t). In contrast with classical systems, these trajectories X and Y do not follow the same path. Further, we provide a Frenet apparatus for both trajectories in various cases and discuss their effect.
引用
收藏
相关论文
共 50 条
  • [21] Stability Analysis of Fractional-Order Nonlinear Systems with Delay
    Wang, Yu
    Li, Tianzeng
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [22] Stabilization Analysis For Fractional-Order Systems With Input Delays
    Song, Xiaona
    Liu, Shanzhong
    Fu, Zhumu
    2013 INTERNATIONAL CONFERENCE ON ADVANCED MECHATRONIC SYSTEMS (ICAMECHS), 2013, : 249 - 252
  • [23] Stability analysis on a class of nonlinear fractional-order systems
    Zhiliang Wang
    Dongsheng Yang
    Huaguang Zhang
    Nonlinear Dynamics, 2016, 86 : 1023 - 1033
  • [24] Synchronization of Chaotic Fractional-order Systems via Fractional-Order Adaptive Controller
    Fayazi, Ali
    EMERGING SYSTEMS FOR MATERIALS, MECHANICS AND MANUFACTURING, 2012, 109 : 333 - 339
  • [25] Stability analysis of delayed fractional-order switched systems
    Yang, Ran
    Liu, Song
    Li, Xiaoyan
    Huang, Tao
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2023, 45 (03) : 502 - 511
  • [26] Robust stability criterion of fractional-order functions for interval fractional-order systems
    Gao, Zhe
    Liao, Xiaozhong
    IET CONTROL THEORY AND APPLICATIONS, 2013, 7 (01): : 60 - 67
  • [27] Adaptive Fractional-order Unscented Kalman Filters for Nonlinear Fractional-order Systems
    Yue Miao
    Zhe Gao
    Chuang Yang
    International Journal of Control, Automation and Systems, 2022, 20 : 1283 - 1293
  • [28] Adaptive Fractional-order Unscented Kalman Filters for Nonlinear Fractional-order Systems
    Miao, Yue
    Gao, Zhe
    Yang, Chuang
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2022, 20 (04) : 1283 - 1293
  • [29] Design of a fractional-order fuzzy PI controller for fractional-order chaotic systems
    Han, Wei
    Gao, Bingkun
    Guo, Haoxuan
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 4825 - 4830
  • [30] Fractional-Order Adaptive Fault Estimation for a Class of Nonlinear Fractional-Order Systems
    N'Doye, Ibrahima
    Laleg-Kirati, Taous-Meriem
    2015 AMERICAN CONTROL CONFERENCE (ACC), 2015, : 3804 - 3809