Adaptive synchronisation of fractional-order chaotic systems

被引:33
|
作者
Zhang Ruo-Xun [1 ,2 ,3 ]
Yang Shi-Ping [1 ,2 ]
机构
[1] Hebei Normal Univ, Coll Phys Sci & Informat Engn, Shijiazhuang 050016, Peoples R China
[2] Hebei Adv Thin Films Lab, Shijiazhuang 050016, Peoples R China
[3] Xingtai Univ, Coll Elementary, Xingtai 054001, Hebei Province, Peoples R China
关键词
new stability theory; fractional-order chaotic system; adaptive synchronisation; CHUAS SYSTEM; CHEN SYSTEM; DYNAMICS; HYPERCHAOS;
D O I
10.1088/1674-1056/19/2/020510
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A new stability theory of nonlinear dynamic systems is proposed, and a novel adaptive synchronisation method is presented for fractional-order chaotic and hyperchaotic systems based on the theory described in this paper. In comparison with previous methods, not only is the present control scheme simple but also it employs only one control strength, converges very fast, and it is also suitable for a large class of fractional-order chaotic and hyperchaotic systems. Moreover, this scheme is analytical and simple to implement in practice. Numerical and circuit simulations are used to validate and demonstrate the effectiveness of the method.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Adaptive synchronisation of fractional-order chaotic systems
    张若洵
    杨世平
    [J]. Chinese Physics B, 2010, 19 (02) : 161 - 167
  • [2] Novel fractional-order chaotic systems of different order and multiswitching synchronisation
    Neetu Aneja
    P Tripathi
    Binay Kumar Sharma
    [J]. Pramana, 2020, 94
  • [3] Novel fractional-order chaotic systems of different order and multiswitching synchronisation
    Aneja, Neetu
    Tripathi, P.
    Sharma, Binay Kumar
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2020, 94 (01):
  • [4] Reduced-order fractional integral observer for synchronisation and anti-synchronisation of fractional-order chaotic systems
    Melendez-Vazquez, Fidel
    Martinez-Guerra, Rafael
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2018, 12 (12): : 1755 - 1762
  • [5] Synchronization of Chaotic Fractional-order Systems via Fractional-Order Adaptive Controller
    Fayazi, Ali
    [J]. EMERGING SYSTEMS FOR MATERIALS, MECHANICS AND MANUFACTURING, 2012, 109 : 333 - 339
  • [6] Synchronisation of fractional-order time delayed chaotic systems with ring connection
    S. He
    K. Sun
    H. Wang
    [J]. The European Physical Journal Special Topics, 2016, 225 : 97 - 106
  • [7] Computations of synchronisation conditions in some fractional-order chaotic and hyperchaotic systems
    A Al-Khedhairi
    A E Matouk
    S S Askar
    [J]. Pramana, 2019, 92
  • [8] Synchronisation of fractional-order time delayed chaotic systems with ring connection
    He, S.
    Sun, K.
    Wang, H.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2016, 225 (01): : 97 - 106
  • [9] Computations of synchronisation conditions in some fractional-order chaotic and hyperchaotic systems
    Al-Khedhairi, A.
    Matouk, A. E.
    Askar, S. S.
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2019, 92 (05):
  • [10] Synchronisation of integer-order and fractional-order discrete-time chaotic systems
    Ouannas, Adel
    Khennaoui, Amina-Aicha
    Zehrour, Okba
    Bendoukha, Samir
    Grassi, Giuseppe
    Viet-Thanh Pham
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2019, 92 (04):