Novel fractional-order chaotic systems of different order and multiswitching synchronisation

被引:0
|
作者
Aneja, Neetu [1 ]
Tripathi, P. [2 ]
Sharma, Binay Kumar [3 ]
机构
[1] Univ Delhi, Dept Math, New Delhi 110007, India
[2] Univ Delhi, DSC, Dept Math, New Delhi 110003, India
[3] Univ Delhi, Dept Math, Shaheed Bhagat Singh Coll, New Delhi 110017, India
来源
PRAMANA-JOURNAL OF PHYSICS | 2020年 / 94卷 / 01期
关键词
Rabinovich-Fabrikant fractional-order system; Duffing fractional-order system; adaptive synchronisation; multiswitching; fractional-order Lyapunov stability theory; 05; 90; +m;
D O I
10.1007/s12043-020-01952-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper gives multiswitching synchronisation scheme for a class of fractional-order chaotic systems by combining active and adaptive control theories. Adaptive controllers have been designed by using different laws of switching and fractional-order Lyapunov stability theory. We have also constructed a new fractional-order Duffing system. The fractional-order Duffing system and fractional-order Rabinovich-Fabrikant system have been taken as the drive system and the response system respectively. Applications have been demonstrated. Theoretical analysis and numerical simulations are also given to verify the robustness of the proposed controllers.
引用
下载
收藏
页数:15
相关论文
共 50 条
  • [1] Novel fractional-order chaotic systems of different order and multiswitching synchronisation
    Neetu Aneja
    P Tripathi
    Binay Kumar Sharma
    Pramana, 2020, 94
  • [2] Multiswitching combination synchronisation of non-identical fractional-order chaotic systems
    Bhat, Muzaffar Ahmad
    Khan, Ayub
    PRAMANA-JOURNAL OF PHYSICS, 2018, 90 (06):
  • [3] Multiswitching combination synchronisation of non-identical fractional-order chaotic systems
    Muzaffar Ahmad Bhat
    Ayub Khan
    Pramana, 2018, 90
  • [4] Adaptive synchronisation of fractional-order chaotic systems
    张若洵
    杨世平
    Chinese Physics B, 2010, 19 (02) : 161 - 167
  • [5] Adaptive synchronisation of fractional-order chaotic systems
    Zhang Ruo-Xun
    Yang Shi-Ping
    CHINESE PHYSICS B, 2010, 19 (02)
  • [6] Reduced-order fractional integral observer for synchronisation and anti-synchronisation of fractional-order chaotic systems
    Melendez-Vazquez, Fidel
    Martinez-Guerra, Rafael
    IET CONTROL THEORY AND APPLICATIONS, 2018, 12 (12): : 1755 - 1762
  • [7] Synchronisation of integer-order and fractional-order discrete-time chaotic systems
    Ouannas, Adel
    Khennaoui, Amina-Aicha
    Zehrour, Okba
    Bendoukha, Samir
    Grassi, Giuseppe
    Viet-Thanh Pham
    PRAMANA-JOURNAL OF PHYSICS, 2019, 92 (04):
  • [8] Synchronisation of integer-order and fractional-order discrete-time chaotic systems
    Adel Ouannas
    Amina-Aicha Khennaoui
    Okba Zehrour
    Samir Bendoukha
    Giuseppe Grassi
    Viet-Thanh Pham
    Pramana, 2019, 92
  • [9] Synchronisation Control of a Novel Fractional-order Chaotic System with Hidden Attractor
    Borah, Manashita
    Roy, Prasanta
    Roy, Binoy K.
    PROCEEDINGS OF THE 2016 IEEE STUDENTS' TECHNOLOGY SYMPOSIUM (TECHSYM), 2016, : 163 - 168
  • [10] Synchronisation of fractional-order time delayed chaotic systems with ring connection
    S. He
    K. Sun
    H. Wang
    The European Physical Journal Special Topics, 2016, 225 : 97 - 106