Reduced-order fractional integral observer for synchronisation and anti-synchronisation of fractional-order chaotic systems

被引:8
|
作者
Melendez-Vazquez, Fidel [1 ]
Martinez-Guerra, Rafael [2 ]
机构
[1] Tecnol Estudios Super Coacalco, Ctr Cooperac Acad Ind, Av 16 Septiembre 54, Coacalco De Berriozabal 55700, Estado De Mexic, Mexico
[2] CINVESTAV IPN, Dept Control Automatico, Av IPN 2508, Mexico City 07360, DF, Mexico
来源
IET CONTROL THEORY AND APPLICATIONS | 2018年 / 12卷 / 12期
关键词
observability; numerical analysis; synchronisation; nonlinear control systems; chaos; reduced order systems; observers; reduced-order fractional integral observer; fractional-order chaotic systems; fractional algebraic observability condition; slave system; master system; antisynchronisation problem; Mittag-Leffler stable system; numerical simulation; fractional Lorenz r systems; Rossler systems; CONTROL STRATEGY;
D O I
10.1049/iet-cta.2017.1117
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this study, the problems of synchronisation and anti-synchronisation are solved for commensurate and incommensurate fractional chaotic systems. A reduced-order fractional integral observer is proposed for fractional systems satisfying a fractional algebraic observability condition, which is shown to be Mittag-Leffler stable. This observer is used as a slave system, whose states are synchronised with the states of the chaotic system, which acts as a master. The observer uses a reduced set of measurable signals from the master system, solving the anti-synchronisation problem as a straightforward extension of the synchronisation one. Numerical simulations on the fractional Lorenz and Rossler systems assess the performance of the proposed methodology.
引用
收藏
页码:1755 / 1762
页数:8
相关论文
共 50 条
  • [1] Adaptive synchronisation of fractional-order chaotic systems
    张若洵
    杨世平
    [J]. Chinese Physics B, 2010, 19 (02) : 161 - 167
  • [2] Adaptive synchronisation of fractional-order chaotic systems
    Zhang Ruo-Xun
    Yang Shi-Ping
    [J]. CHINESE PHYSICS B, 2010, 19 (02)
  • [3] Novel fractional-order chaotic systems of different order and multiswitching synchronisation
    Neetu Aneja
    P Tripathi
    Binay Kumar Sharma
    [J]. Pramana, 2020, 94
  • [4] Novel fractional-order chaotic systems of different order and multiswitching synchronisation
    Aneja, Neetu
    Tripathi, P.
    Sharma, Binay Kumar
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2020, 94 (01):
  • [5] Anti-synchronisation of non-identical fractional order hyperchaotic systems
    Alomari, A. K.
    Al-Jamal, Mohammad F.
    Tahat, Nedal
    [J]. INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2020, 12 (03) : 285 - 296
  • [6] High gain observer design for fractional-order non-linear systems with delayed measurements: application to synchronisation of fractional-order chaotic systems
    Bettayeb, Maamar
    Al-Saggaf, Ubaid M.
    Djennoune, Said
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2017, 11 (17): : 3171 - 3178
  • [7] Synchronisation of fractional-order time delayed chaotic systems with ring connection
    S. He
    K. Sun
    H. Wang
    [J]. The European Physical Journal Special Topics, 2016, 225 : 97 - 106
  • [8] Computations of synchronisation conditions in some fractional-order chaotic and hyperchaotic systems
    A Al-Khedhairi
    A E Matouk
    S S Askar
    [J]. Pramana, 2019, 92
  • [9] Synchronisation of fractional-order time delayed chaotic systems with ring connection
    He, S.
    Sun, K.
    Wang, H.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2016, 225 (01): : 97 - 106
  • [10] Computations of synchronisation conditions in some fractional-order chaotic and hyperchaotic systems
    Al-Khedhairi, A.
    Matouk, A. E.
    Askar, S. S.
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2019, 92 (05):