Suppressing chaos for a class of fractional-order chaotic systems by adaptive integer-order and fractional-order feedback control

被引:5
|
作者
Li, Ruihong [1 ]
Li, Wei [1 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian 710071, Peoples R China
来源
OPTIK | 2015年 / 126卷 / 21期
关键词
Fractional-order chaotic system; Integer-order feedback; Fractional-order feedback; Suppress chaos; Barbalat's lemma; SYNCHRONIZATION; DYNAMICS; HYPERCHAOS; APPROXIMATION; DESIGN; VAN;
D O I
10.1016/j.ijleo.2015.07.024
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper is devoted to studying how to more effectively suppress chaos for a class of fractional-order nonlinear systems. By means of adaptive control theory for integer-order nonlinear system, we propose two simple and novel adaptive feedback methods to control chaos. Rigorous theoretical proof is provided based on some essential properties of fractional calculus and Barbalat's Lyapunov-like stability theorem. It is discovered that both fractional-order feedback controller and integer-order one can guide chaotic trajectories to the unstable equilibrium point. To display the feasibility and validity of presented methods, some typical fractional-order chaotic systems have been chosen as numerical illustration. Furthermore, by comparing two different control techniques, one can find the fractional-order feedback control algorithm is more stable and more flexible. (C) 2015 Elsevier GmbH. All rights reserved.
引用
下载
收藏
页码:2965 / 2973
页数:9
相关论文
共 50 条
  • [1] Nonlinear feedback synchronisation control between fractional-order and integer-order chaotic systems
    贾立新
    戴浩
    惠萌
    Chinese Physics B, 2010, 19 (11) : 198 - 203
  • [2] Nonlinear feedback synchronisation control between fractional-order and integer-order chaotic systems
    Jia Li-Xin
    Dai Hao
    Hui Meng
    CHINESE PHYSICS B, 2010, 19 (11)
  • [3] Passive Synchronization Control for Integer-order Chaotic Systems and Fractional-order Chaotic Systems
    Shao Keyong
    Bu Ruixuan
    Gao Wang
    Wang Qiutong
    Zhang Yi
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 1115 - 1119
  • [4] Fractional-Order Parameter Update Law for Adaptive Control of Integer-Order Systems
    Weise, Christoph
    Reger, Johann
    2021 9TH INTERNATIONAL CONFERENCE ON SYSTEMS AND CONTROL (ICSC'21), 2021, : 325 - 331
  • [5] Adaptive Fractional-Order Backstepping Control for a General Class of Nonlinear Uncertain Integer-Order Systems
    Li, Xinyao
    Wen, Changyun
    Li, Xiaolei
    He, Jinsong
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2023, 70 (07) : 7246 - 7256
  • [6] A method for the integer-order approximation of fractional-order systems
    Krajewski, W.
    Viaro, U.
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2014, 351 (01): : 555 - 564
  • [7] Fractional-Order Observer for Integer-Order LTI Systems
    Weise, Christoph
    Wulff, Kai
    Reger, Johann
    2017 11TH ASIAN CONTROL CONFERENCE (ASCC), 2017, : 2101 - 2106
  • [8] Synchronization between integer-order chaotic systems and a class of fractional-order chaotic systems via sliding mode control
    Chen, Diyi
    Zhang, Runfan
    Sprott, J. C.
    Chen, Haitao
    Ma, Xiaoyi
    CHAOS, 2012, 22 (02)
  • [9] Synchronisation of integer-order and fractional-order discrete-time chaotic systems
    Ouannas, Adel
    Khennaoui, Amina-Aicha
    Zehrour, Okba
    Bendoukha, Samir
    Grassi, Giuseppe
    Viet-Thanh Pham
    PRAMANA-JOURNAL OF PHYSICS, 2019, 92 (04):
  • [10] Dual projective synchronization between integer-order and fractional-order chaotic systems
    Zhang, Qing
    Xiao, Jian
    Zhang, Xiao-Qing
    Cao, Duan-Yang
    OPTIK, 2017, 141 : 90 - 98