Suppressing chaos for a class of fractional-order chaotic systems by adaptive integer-order and fractional-order feedback control

被引:5
|
作者
Li, Ruihong [1 ]
Li, Wei [1 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian 710071, Peoples R China
来源
OPTIK | 2015年 / 126卷 / 21期
关键词
Fractional-order chaotic system; Integer-order feedback; Fractional-order feedback; Suppress chaos; Barbalat's lemma; SYNCHRONIZATION; DYNAMICS; HYPERCHAOS; APPROXIMATION; DESIGN; VAN;
D O I
10.1016/j.ijleo.2015.07.024
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper is devoted to studying how to more effectively suppress chaos for a class of fractional-order nonlinear systems. By means of adaptive control theory for integer-order nonlinear system, we propose two simple and novel adaptive feedback methods to control chaos. Rigorous theoretical proof is provided based on some essential properties of fractional calculus and Barbalat's Lyapunov-like stability theorem. It is discovered that both fractional-order feedback controller and integer-order one can guide chaotic trajectories to the unstable equilibrium point. To display the feasibility and validity of presented methods, some typical fractional-order chaotic systems have been chosen as numerical illustration. Furthermore, by comparing two different control techniques, one can find the fractional-order feedback control algorithm is more stable and more flexible. (C) 2015 Elsevier GmbH. All rights reserved.
引用
下载
收藏
页码:2965 / 2973
页数:9
相关论文
共 50 条
  • [41] Synchronization of a class of fractional-order and integer order hyperchaotic systems
    Wu, Yanping
    Wang, Guodong
    JOURNAL OF VIBRATION AND CONTROL, 2014, 20 (10) : 1584 - 1588
  • [42] Fractional-Order Partial Cancellation of Integer-Order Poles and Zeros
    Voss, Benjamin
    Weise, Christoph
    Ruderman, Michael
    Reger, Johann
    IFAC PAPERSONLINE, 2022, 55 (25): : 259 - 264
  • [43] Fractional-Order Sliding Mode Synchronization for Fractional-Order Chaotic Systems
    Wang, Chenhui
    ADVANCES IN MATHEMATICAL PHYSICS, 2018, 2018
  • [44] Mutual transformations of fractional-order and integer-order optical vortices
    Alexeyev, C. N.
    Egorov, Yu. A.
    Volyar, A. V.
    PHYSICAL REVIEW A, 2017, 96 (06)
  • [45] CHAOS AND ADAPTIVE SYNCHRONIZATIONS IN FRACTIONAL-ORDER SYSTEMS
    Liu, Xiaojun
    Hong, Ling
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (11):
  • [46] Fuzzy adaptive synchronization of a class of fractional-order chaotic systems
    Bouzeriba, A.
    Boulkroune, A.
    Bouden, T.
    3RD INTERNATIONAL CONFERENCE ON CONTROL, ENGINEERING & INFORMATION TECHNOLOGY (CEIT 2015), 2015,
  • [47] Projective Synchronization for a Class of Fractional-Order Chaotic Systems with Fractional-Order in the (1, 2) Interval
    Zhou, Ping
    Bai, Rongji
    Zheng, Jiming
    ENTROPY, 2015, 17 (03): : 1123 - 1134
  • [48] Linear feedback control for fractional-order chaotic systems with fractional order 1 ≤ q < 2
    Luo, J. (junhai_luo@uestc.edu.cn), 1600, ICIC Express Letters Office (05):
  • [49] Adaptive synchronisation of fractional-order chaotic systems
    张若洵
    杨世平
    Chinese Physics B, 2010, 19 (02) : 161 - 167
  • [50] Adaptive synchronisation of fractional-order chaotic systems
    Zhang Ruo-Xun
    Yang Shi-Ping
    CHINESE PHYSICS B, 2010, 19 (02)