Suppressing chaos for a class of fractional-order chaotic systems by adaptive integer-order and fractional-order feedback control

被引:5
|
作者
Li, Ruihong [1 ]
Li, Wei [1 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian 710071, Peoples R China
来源
OPTIK | 2015年 / 126卷 / 21期
关键词
Fractional-order chaotic system; Integer-order feedback; Fractional-order feedback; Suppress chaos; Barbalat's lemma; SYNCHRONIZATION; DYNAMICS; HYPERCHAOS; APPROXIMATION; DESIGN; VAN;
D O I
10.1016/j.ijleo.2015.07.024
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper is devoted to studying how to more effectively suppress chaos for a class of fractional-order nonlinear systems. By means of adaptive control theory for integer-order nonlinear system, we propose two simple and novel adaptive feedback methods to control chaos. Rigorous theoretical proof is provided based on some essential properties of fractional calculus and Barbalat's Lyapunov-like stability theorem. It is discovered that both fractional-order feedback controller and integer-order one can guide chaotic trajectories to the unstable equilibrium point. To display the feasibility and validity of presented methods, some typical fractional-order chaotic systems have been chosen as numerical illustration. Furthermore, by comparing two different control techniques, one can find the fractional-order feedback control algorithm is more stable and more flexible. (C) 2015 Elsevier GmbH. All rights reserved.
引用
下载
收藏
页码:2965 / 2973
页数:9
相关论文
共 50 条
  • [21] Loewner integer-order approximation of MIMO fractional-order systems
    Abdalla, Hassan Mohamed Abdelalim
    Casagrande, Daniele
    Krajewski, Wieslaw
    Viaro, Umberto
    APPLIED NUMERICAL MATHEMATICS, 2024, 198 : 112 - 121
  • [22] Loewner integer-order approximation of MIMO fractional-order systems
    Abdalla, Hassan Mohamed Abdelalim
    Casagrande, Daniele
    Krajewski, Wieslaw
    Viaro, Umberto
    Applied Numerical Mathematics, 2024, 198 : 112 - 121
  • [23] Synchronization between fractional-order chaotic systems and integer orders chaotic systems (fractional-order chaotic systems)
    周平
    程元明
    邝菲
    Chinese Physics B, 2010, 19 (09) : 237 - 242
  • [24] THE INTEGER-ORDER APPROXIMATION OF FRACTIONAL-ORDER SYSTEMS IN THE LOEWNER FRAMEWORK
    Casagrande, D.
    Krajewski, W.
    Viaro, U.
    IFAC PAPERSONLINE, 2019, 52 (03): : 43 - 48
  • [25] Adaptive modified generalized function projection synchronization between integer-order and fractional-order chaotic systems
    Guan, Junbiao
    OPTIK, 2016, 127 (10): : 4211 - 4216
  • [26] Synchronization of fractional-order and integer-order chaotic (hyper-chaotic) systems with different dimensions
    Xiaoyan Yang
    Heng Liu
    Shenggang Li
    Advances in Difference Equations, 2017
  • [27] Synchronization of fractional-order and integer-order chaotic (hyper-chaotic) systems with different dimensions
    Yang, Xiaoyan
    Liu, Heng
    Li, Shenggang
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [28] Switching Synchronisation Control between Integer-order and Fractional-order Dynamics of a Chaotic System
    Borah, Manashita
    Roy, Binoy K.
    2017 INDIAN CONTROL CONFERENCE (ICC), 2017, : 456 - 461
  • [29] Synchronization of Chaotic Fractional-order Systems via Fractional-Order Adaptive Controller
    Fayazi, Ali
    EMERGING SYSTEMS FOR MATERIALS, MECHANICS AND MANUFACTURING, 2012, 109 : 333 - 339
  • [30] Synchronization between integer-order chaotic systems and a class of fractional-order chaotic system based on fuzzy sliding mode control
    Chen, Diyi
    Zhang, Runfan
    Sprott, Julien Clinton
    Ma, Xiaoyi
    NONLINEAR DYNAMICS, 2012, 70 (02) : 1549 - 1561