PyGpPHs: A Python']Python Package for Bayesian Modeling of Port-Hamiltonian Systems

被引:0
|
作者
Li, Peilun [1 ]
Tan, Kaiyuan [1 ]
Beckers, Thomas [1 ]
机构
[1] Vanderbilt Univ, Dept Comp Sci, Nashville, TN 37235 USA
来源
IFAC PAPERSONLINE | 2024年 / 58卷 / 06期
关键词
port-Hamiltonian systems; physics-informed learning; Gaussian processes; EQUATION;
D O I
10.1016/j.ifacol.2024.08.256
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
PyGpPHs is a Python toolbox for physics-informed learning of physical systems. Compared to pure data-driven approaches, it relies on solid physics priors based on the Gaussian process port-Hamiltonian systems (GP-PHS) framework. This foundation guarantees that the learning procedure adheres to the fundamental physical laws governing real-world systems. Utilizing the Bayesian learning method, PyGpPHs enables physics-informed predictions with uncertainty quantification, which are based on the posterior distribution over Hamiltonians. The PyGpPHs toolbox is designed to make Bayesian learning with physics prior accessible to the learning and control community. PyGpPHs can be installed through an open-source link(1). Copyright (C) 2024 The Authors.
引用
收藏
页码:54 / 59
页数:6
相关论文
共 50 条
  • [41] Port-Hamiltonian Formulation of Systems With Memory
    Jeltsema, Dimitri
    Doria-Cerezo, Arnau
    PROCEEDINGS OF THE IEEE, 2012, 100 (06) : 1928 - 1937
  • [42] pyvine: The Python']Python Package for Regular Vine Copula Modeling, Sampling and Testing
    Yuan, Zhenfei
    Hu, Taizhong
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2021, 9 (01) : 53 - 86
  • [43] A STRUCTURAL OBSERVATION ON PORT-HAMILTONIAN SYSTEMS
    Picard, Rainer H.
    Trostorff, Sascha
    Watson, Bruce
    Waurick, Marcus
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2023, 61 (02) : 511 - 535
  • [44] On Energy Conversion in Port-Hamiltonian Systems
    van der Schaft, Arjan
    Jeltsema, Dimitri
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 2421 - 2427
  • [45] Generalized port-Hamiltonian DAE systems
    van der Schaft, Arjan
    Maschke, Bernhard
    SYSTEMS & CONTROL LETTERS, 2018, 121 : 31 - 37
  • [46] Learning port-Hamiltonian Systems—Algorithms
    V. Salnikov
    A. Falaize
    D. Lozienko
    Computational Mathematics and Mathematical Physics, 2023, 63 : 126 - 134
  • [47] Discrete stochastic port-Hamiltonian systems
    Cordoni, Francesco Giuseppe
    Di Persio, Luca
    Muradore, Riccardo
    AUTOMATICA, 2022, 137
  • [48] Decomposition of Linear Port-Hamiltonian Systems
    Hoeffner, K.
    Guay, M.
    2011 AMERICAN CONTROL CONFERENCE, 2011, : 3686 - 3691
  • [49] Notch filters for port-Hamiltonian systems
    Dirksz, D. A.
    Scherpen, J. M. A.
    van der Schaft, A. J.
    Steinbuch, M.
    2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 238 - 243
  • [50] Notch Filters for Port-Hamiltonian Systems
    Dirksz, D. A.
    Scherpen, J. M. A.
    van der Schaft, A. J.
    Steinbuch, M.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (09) : 2440 - 2445