A STRUCTURAL OBSERVATION ON PORT-HAMILTONIAN SYSTEMS

被引:1
|
作者
Picard, Rainer H. [1 ]
Trostorff, Sascha [2 ]
Watson, Bruce [3 ]
Waurick, Marcus [4 ]
机构
[1] Tech Univ Dresden, Dept Math, D-01062 Dresden, Saxony, Germany
[2] CAU Kiel, Math Seminar, D-24118 Kiel, Germany
[3] Univ Witwatersrand, Sch Math, ZA-2000 Johannesburg, South Africa
[4] TU Bergakademie Freiberg, D-09599 Freiberg, Germany
关键词
port-Hamiltonian systems; m-accretive operators; congruences; BOUNDARY CONTROL-SYSTEMS; WELL-POSEDNESS; OPERATORS;
D O I
10.1137/21M1441365
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study port-Hamiltonian systems on a family of intervals and characterize all boundary conditions leading to m-accretive realizations of the port-Hamiltonian operator and thus to generators of contractive semigroups. The proofs are based on a structural observation that the port-Hamiltonian operator can be transformed to the derivative on a familiy of reference intervals by suitable congruence relations, allowing for studying the simpler case of a transport equation. Moreover, we provide well-posedness results for associated control problems without assuming any additional regularity of the operators involved.
引用
收藏
页码:511 / 535
页数:25
相关论文
共 50 条
  • [1] On Stochastic port-Hamiltonian Systems with Boundary Control and Observation
    Lamoline, F.
    Winkin, J. J.
    2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,
  • [2] Stochastic Port-Hamiltonian Systems
    Francesco Cordoni
    Luca Di Persio
    Riccardo Muradore
    Journal of Nonlinear Science, 2022, 32
  • [3] Incrementally port-Hamiltonian systems
    Camlibel, M. K.
    van der Schaft, A. J.
    2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 2538 - 2543
  • [4] PORT-HAMILTONIAN SYSTEMS ON GRAPHS
    van der Schaft, A. J.
    Maschke, B. M.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2013, 51 (02) : 906 - 937
  • [5] Memristive port-Hamiltonian Systems
    Jeltsema, Dimitri
    van der Schaft, Arjan J.
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2010, 16 (02) : 75 - 93
  • [6] Stochastic Port-Hamiltonian Systems
    Cordoni, Francesco
    Di Persio, Luca
    Muradore, Riccardo
    JOURNAL OF NONLINEAR SCIENCE, 2022, 32 (06)
  • [7] Observability for port-Hamiltonian systems
    Jacob, Birgit
    Zwart, Hans
    2021 EUROPEAN CONTROL CONFERENCE (ECC), 2021, : 2052 - 2057
  • [8] Discrete port-Hamiltonian systems
    Talasila, V
    Clemente-Gallardo, J
    van der Schaft, AJ
    SYSTEMS & CONTROL LETTERS, 2006, 55 (06) : 478 - 486
  • [9] A port-Hamiltonian approach to modeling the structural dynamics of complex systems
    Warsewa, Alexander
    Boehm, Michael
    Sawodny, Oliver
    Tarin, Cristina
    APPLIED MATHEMATICAL MODELLING, 2021, 89 : 1528 - 1546
  • [10] On the interconnection of irreversible port-Hamiltonian systems
    Ramirez, Hector
    Le Gorrec, Yann
    IFAC PAPERSONLINE, 2023, 56 (01): : 114 - 119