Observability for port-Hamiltonian systems

被引:0
|
作者
Jacob, Birgit [1 ]
Zwart, Hans [2 ,3 ]
机构
[1] Univ Wuppertal, Sch Math & Nat Sci, IMACM, Gaussstr 20, D-42119 Wuppertal, Germany
[2] Eindhoven Univ Technol, Dept Mech Engn, Dynam & Control Grp, NL-5612 AZ Eindhoven, Netherlands
[3] Univ Twente, Dept Appl Math, Fac Elect Engn Math & Comp Sci, NL-7500 AE Enschede, Netherlands
关键词
OBSERVATION OPERATORS; EXACT CONTROLLABILITY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The class of port-Hamiltonian systems incorporates many physical models, such as mechanical systems in the finite-dimensional case and wave and beam equations in the infinite-dimensional case. In this paper we study a subclass of linear first order port-Hamiltonian systems. In [3], it is shown that these systems are exactly observable when the energy is not dissipated internally and when sufficient observations are made at the boundary. In this article we study the observability properties for these systems when internal dissipation of energy is possible. We cannot show the exact observability, but we do show that the Hautus test is satisfied. In general, the Hautus test is weaker than exact observability, but stronger than approximate observability. Hence we conclude that these systems are approximately observable.
引用
收藏
页码:2052 / 2057
页数:6
相关论文
共 50 条
  • [1] Generic observability for port-Hamiltonian descriptor systems
    Kirchhoff, Jonas
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2024, 36 (04) : 831 - 873
  • [2] Stochastic Port-Hamiltonian Systems
    Francesco Cordoni
    Luca Di Persio
    Riccardo Muradore
    Journal of Nonlinear Science, 2022, 32
  • [3] Incrementally port-Hamiltonian systems
    Camlibel, M. K.
    van der Schaft, A. J.
    2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 2538 - 2543
  • [4] PORT-HAMILTONIAN SYSTEMS ON GRAPHS
    van der Schaft, A. J.
    Maschke, B. M.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2013, 51 (02) : 906 - 937
  • [5] Memristive port-Hamiltonian Systems
    Jeltsema, Dimitri
    van der Schaft, Arjan J.
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2010, 16 (02) : 75 - 93
  • [6] Stochastic Port-Hamiltonian Systems
    Cordoni, Francesco
    Di Persio, Luca
    Muradore, Riccardo
    JOURNAL OF NONLINEAR SCIENCE, 2022, 32 (06)
  • [7] Discrete port-Hamiltonian systems
    Talasila, V
    Clemente-Gallardo, J
    van der Schaft, AJ
    SYSTEMS & CONTROL LETTERS, 2006, 55 (06) : 478 - 486
  • [8] On the interconnection of irreversible port-Hamiltonian systems
    Ramirez, Hector
    Le Gorrec, Yann
    IFAC PAPERSONLINE, 2023, 56 (01): : 114 - 119
  • [9] Linear port-Hamiltonian descriptor systems
    Christopher Beattie
    Volker Mehrmann
    Hongguo Xu
    Hans Zwart
    Mathematics of Control, Signals, and Systems, 2018, 30
  • [10] Linear port-Hamiltonian descriptor systems
    Beattie, Christopher
    Mehrmann, Volker
    Xu, Hongguo
    Zwart, Hans
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2018, 30 (04)