Observability for port-Hamiltonian systems

被引:0
|
作者
Jacob, Birgit [1 ]
Zwart, Hans [2 ,3 ]
机构
[1] Univ Wuppertal, Sch Math & Nat Sci, IMACM, Gaussstr 20, D-42119 Wuppertal, Germany
[2] Eindhoven Univ Technol, Dept Mech Engn, Dynam & Control Grp, NL-5612 AZ Eindhoven, Netherlands
[3] Univ Twente, Dept Appl Math, Fac Elect Engn Math & Comp Sci, NL-7500 AE Enschede, Netherlands
关键词
OBSERVATION OPERATORS; EXACT CONTROLLABILITY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The class of port-Hamiltonian systems incorporates many physical models, such as mechanical systems in the finite-dimensional case and wave and beam equations in the infinite-dimensional case. In this paper we study a subclass of linear first order port-Hamiltonian systems. In [3], it is shown that these systems are exactly observable when the energy is not dissipated internally and when sufficient observations are made at the boundary. In this article we study the observability properties for these systems when internal dissipation of energy is possible. We cannot show the exact observability, but we do show that the Hautus test is satisfied. In general, the Hautus test is weaker than exact observability, but stronger than approximate observability. Hence we conclude that these systems are approximately observable.
引用
收藏
页码:2052 / 2057
页数:6
相关论文
共 50 条
  • [11] PORT-HAMILTONIAN SYSTEMS THEORY AND MONOTONICITY
    Camlibel, M. K.
    Van der Schaftdagger, A. J.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2023, 61 (04) : 2193 - 2221
  • [12] On the stability of port-Hamiltonian descriptor systems
    Gernandt, Hannes
    Haller, Frederic E.
    IFAC PAPERSONLINE, 2021, 54 (19): : 137 - 142
  • [13] An Overview on Irreversible Port-Hamiltonian Systems
    Ramirez, Hector
    Le Gorrec, Yann
    ENTROPY, 2022, 24 (10)
  • [14] Port-Hamiltonian Formulation of Systems With Memory
    Jeltsema, Dimitri
    Doria-Cerezo, Arnau
    PROCEEDINGS OF THE IEEE, 2012, 100 (06) : 1928 - 1937
  • [15] OPTIMAL ROBUSTNESS OF PORT-HAMILTONIAN SYSTEMS
    Mehrmann, Volker
    Van Dooren, Paul M.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2020, 41 (01) : 134 - 151
  • [16] A STRUCTURAL OBSERVATION ON PORT-HAMILTONIAN SYSTEMS
    Picard, Rainer H.
    Trostorff, Sascha
    Watson, Bruce
    Waurick, Marcus
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2023, 61 (02) : 511 - 535
  • [17] Discrete stochastic port-Hamiltonian systems
    Cordoni, Francesco Giuseppe
    Di Persio, Luca
    Muradore, Riccardo
    AUTOMATICA, 2022, 137
  • [18] Generalized port-Hamiltonian DAE systems
    van der Schaft, Arjan
    Maschke, Bernhard
    SYSTEMS & CONTROL LETTERS, 2018, 121 : 31 - 37
  • [19] On Energy Conversion in Port-Hamiltonian Systems
    van der Schaft, Arjan
    Jeltsema, Dimitri
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 2421 - 2427
  • [20] Decomposition of Linear Port-Hamiltonian Systems
    Hoeffner, K.
    Guay, M.
    2011 AMERICAN CONTROL CONFERENCE, 2011, : 3686 - 3691