Observability for port-Hamiltonian systems

被引:0
|
作者
Jacob, Birgit [1 ]
Zwart, Hans [2 ,3 ]
机构
[1] Univ Wuppertal, Sch Math & Nat Sci, IMACM, Gaussstr 20, D-42119 Wuppertal, Germany
[2] Eindhoven Univ Technol, Dept Mech Engn, Dynam & Control Grp, NL-5612 AZ Eindhoven, Netherlands
[3] Univ Twente, Dept Appl Math, Fac Elect Engn Math & Comp Sci, NL-7500 AE Enschede, Netherlands
关键词
OBSERVATION OPERATORS; EXACT CONTROLLABILITY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The class of port-Hamiltonian systems incorporates many physical models, such as mechanical systems in the finite-dimensional case and wave and beam equations in the infinite-dimensional case. In this paper we study a subclass of linear first order port-Hamiltonian systems. In [3], it is shown that these systems are exactly observable when the energy is not dissipated internally and when sufficient observations are made at the boundary. In this article we study the observability properties for these systems when internal dissipation of energy is possible. We cannot show the exact observability, but we do show that the Hautus test is satisfied. In general, the Hautus test is weaker than exact observability, but stronger than approximate observability. Hence we conclude that these systems are approximately observable.
引用
收藏
页码:2052 / 2057
页数:6
相关论文
共 50 条
  • [41] Geometric spatial reduction for port-Hamiltonian systems
    Ngoc Minh Trang Vu
    Lefevre, Laurent
    Maschke, Bernhard
    SYSTEMS & CONTROL LETTERS, 2019, 125 : 1 - 8
  • [42] Conditions on shifted passivity of port-Hamiltonian systems
    Monshizadeh, Nima
    Monshizadeh, Pooya
    Ortega, Romeo
    van der Schaft, Arjan
    SYSTEMS & CONTROL LETTERS, 2019, 123 : 55 - 61
  • [43] On Matched Disturbance Suppression for Port-Hamiltonian Systems
    Ferguson, Joel
    Wu, Dongjun
    Ortega, Romeo
    IEEE CONTROL SYSTEMS LETTERS, 2020, 4 (04): : 892 - 897
  • [44] RIESZ BASES OF PORT-HAMILTONIAN SYSTEMS\ast
    Jacob, Birgit
    Kaiser, Julia T.
    Zwart, Hans
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2021, 59 (06) : 4646 - 4665
  • [45] IDENTIFICATION OF NONLINEAR CIRCUITS AS PORT-HAMILTONIAN SYSTEMS
    Najnudel, Judy
    Mueller, Remy
    Helie, Thomas
    Roze, David
    2021 24TH INTERNATIONAL CONFERENCE ON DIGITAL AUDIO EFFECTS (DAFX), 2021, : 1 - 8
  • [46] Boundary controlled irreversible port-Hamiltonian systems
    Ramirez, Hector
    Le Gorrec, Yann
    Maschke, Bernhard
    CHEMICAL ENGINEERING SCIENCE, 2022, 248
  • [47] Passive observers for distributed port-Hamiltonian systems
    Toledo, Jesus
    Ramirez, Hector
    Wu, Yongxin
    Le Gorrec, Yann
    IFAC PAPERSONLINE, 2020, 53 (02): : 7587 - 7592
  • [48] Remarks on the geometric structure of port-Hamiltonian systems
    Kirchhoff, Jonas
    Maschke, Bernhard
    IFAC PAPERSONLINE, 2024, 58 (06): : 274 - 279
  • [49] Robust port-Hamiltonian representations of passive systems
    Beattie, Christopher A.
    Mehrmann, Volker
    Van Dooren, Paul
    AUTOMATICA, 2019, 100 : 182 - 186
  • [50] On the Generating Functions of Irreversible port-Hamiltonian Systems
    Kirchhoff, Jonas
    Maschke, Bernhard
    IFAC PAPERSONLINE, 2023, 56 (02): : 10447 - 10452