Observability for port-Hamiltonian systems

被引:0
|
作者
Jacob, Birgit [1 ]
Zwart, Hans [2 ,3 ]
机构
[1] Univ Wuppertal, Sch Math & Nat Sci, IMACM, Gaussstr 20, D-42119 Wuppertal, Germany
[2] Eindhoven Univ Technol, Dept Mech Engn, Dynam & Control Grp, NL-5612 AZ Eindhoven, Netherlands
[3] Univ Twente, Dept Appl Math, Fac Elect Engn Math & Comp Sci, NL-7500 AE Enschede, Netherlands
关键词
OBSERVATION OPERATORS; EXACT CONTROLLABILITY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The class of port-Hamiltonian systems incorporates many physical models, such as mechanical systems in the finite-dimensional case and wave and beam equations in the infinite-dimensional case. In this paper we study a subclass of linear first order port-Hamiltonian systems. In [3], it is shown that these systems are exactly observable when the energy is not dissipated internally and when sufficient observations are made at the boundary. In this article we study the observability properties for these systems when internal dissipation of energy is possible. We cannot show the exact observability, but we do show that the Hautus test is satisfied. In general, the Hautus test is weaker than exact observability, but stronger than approximate observability. Hence we conclude that these systems are approximately observable.
引用
收藏
页码:2052 / 2057
页数:6
相关论文
共 50 条
  • [31] Discrete port-Hamiltonian systems: mixed interconnections
    Talasila, Viswanath
    Clemente-Gallardo, J.
    van der Schaft, A. J.
    2005 44TH IEEE CONFERENCE ON DECISION AND CONTROL & EUROPEAN CONTROL CONFERENCE, VOLS 1-8, 2005, : 5656 - 5661
  • [32] Learning port-Hamiltonian Systems-Algorithms
    Salnikov, V.
    Falaize, A.
    Lozienko, D.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2023, 63 (01) : 126 - 134
  • [33] Optimal control of thermodynamic port-Hamiltonian Systems
    Maschke, Bernhard
    Philipp, Friedrich
    Schaller, Manuel
    Worthmann, Karl
    Faulwasser, Timm
    IFAC PAPERSONLINE, 2022, 55 (30): : 55 - 60
  • [34] Robust integral action of port-Hamiltonian systems
    Ferguson, Joel
    Donaire, Alejandro
    Ortega, Romeo
    Middleton, Richard H.
    IFAC PAPERSONLINE, 2018, 51 (03): : 181 - 186
  • [35] Port-Hamiltonian Systems: Structure Recognition and Applications
    Salnikov, V.
    PROGRAMMING AND COMPUTER SOFTWARE, 2024, 50 (02) : 197 - 201
  • [36] Exergetic port-Hamiltonian systems: modelling basics
    Lohmayer, Markus
    Kotyczka, Paul
    Leyendecker, Sigrid
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2021, 27 (01) : 489 - 521
  • [37] A Simple Robust Controller for Port-Hamiltonian Systems
    Paunonen, Lassi
    Le Gorrec, Yann
    Ramirez, Hector
    IFAC PAPERSONLINE, 2018, 51 (03): : 92 - 96
  • [38] Linear Port-Hamiltonian Systems Are Generically Controllable
    Kirchhoff, Jonas
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (06) : 3220 - 3222
  • [39] Linear port-Hamiltonian DAE systems revisited
    van der Schaft, Arjan
    Mehrmann, Volker
    SYSTEMS & CONTROL LETTERS, 2023, 177
  • [40] On port-Hamiltonian modeling and control of quaternion systems
    Fujimoto, Kenji
    Takeuchi, Tomoya
    Matsumoto, Yuki
    IFAC PAPERSONLINE, 2015, 48 (13): : 39 - 44