RIESZ BASES OF PORT-HAMILTONIAN SYSTEMS\ast

被引:3
|
作者
Jacob, Birgit [1 ]
Kaiser, Julia T. [1 ]
Zwart, Hans [2 ,3 ]
机构
[1] Univ Wuppertal, Sch Math & Nat Sci, IMACM, D-42119 Wuppertal, Germany
[2] Univ Twente, Dept Appl Math, NL-7500 AE Enschede, Netherlands
[3] Tech Univ Eindhoven, Dept Mech Engn, NL-5600 MB Eindhoven, Netherlands
关键词
Riesz spectral operator; infinite-dimensional linear port-Hamiltonian system; strongly continuous group; BOUNDARY CONTROL-SYSTEMS; EXACT CONTROLLABILITY; BASIS PROPERTY; WELL-POSEDNESS; STABILIZATION; EQUATIONS; FEEDBACK;
D O I
10.1137/20M1366216
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The location of the spectrum and the Riesz basis property of well-posed homogeneous infinite-dimensional linear port-Hamiltonian systems on a one-dimensional spatial domain are studied. It is shown that the Riesz basis property is equivalent to the fact that the system operator generates a strongly continuous group. Moreover, in this situation the spectrum consists of eigenvalues only, located in a strip parallel to the imaginary axis and they can decomposed into finitely many sets each having a uniform gap.
引用
收藏
页码:4646 / 4665
页数:20
相关论文
共 50 条
  • [1] Stochastic Port-Hamiltonian Systems
    Francesco Cordoni
    Luca Di Persio
    Riccardo Muradore
    Journal of Nonlinear Science, 2022, 32
  • [2] Incrementally port-Hamiltonian systems
    Camlibel, M. K.
    van der Schaft, A. J.
    2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 2538 - 2543
  • [3] PORT-HAMILTONIAN SYSTEMS ON GRAPHS
    van der Schaft, A. J.
    Maschke, B. M.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2013, 51 (02) : 906 - 937
  • [4] Memristive port-Hamiltonian Systems
    Jeltsema, Dimitri
    van der Schaft, Arjan J.
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2010, 16 (02) : 75 - 93
  • [5] Stochastic Port-Hamiltonian Systems
    Cordoni, Francesco
    Di Persio, Luca
    Muradore, Riccardo
    JOURNAL OF NONLINEAR SCIENCE, 2022, 32 (06)
  • [6] Observability for port-Hamiltonian systems
    Jacob, Birgit
    Zwart, Hans
    2021 EUROPEAN CONTROL CONFERENCE (ECC), 2021, : 2052 - 2057
  • [7] Discrete port-Hamiltonian systems
    Talasila, V
    Clemente-Gallardo, J
    van der Schaft, AJ
    SYSTEMS & CONTROL LETTERS, 2006, 55 (06) : 478 - 486
  • [8] On the interconnection of irreversible port-Hamiltonian systems
    Ramirez, Hector
    Le Gorrec, Yann
    IFAC PAPERSONLINE, 2023, 56 (01): : 114 - 119
  • [9] Linear port-Hamiltonian descriptor systems
    Christopher Beattie
    Volker Mehrmann
    Hongguo Xu
    Hans Zwart
    Mathematics of Control, Signals, and Systems, 2018, 30
  • [10] Linear port-Hamiltonian descriptor systems
    Beattie, Christopher
    Mehrmann, Volker
    Xu, Hongguo
    Zwart, Hans
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2018, 30 (04)