RIESZ BASES OF PORT-HAMILTONIAN SYSTEMS\ast

被引:3
|
作者
Jacob, Birgit [1 ]
Kaiser, Julia T. [1 ]
Zwart, Hans [2 ,3 ]
机构
[1] Univ Wuppertal, Sch Math & Nat Sci, IMACM, D-42119 Wuppertal, Germany
[2] Univ Twente, Dept Appl Math, NL-7500 AE Enschede, Netherlands
[3] Tech Univ Eindhoven, Dept Mech Engn, NL-5600 MB Eindhoven, Netherlands
关键词
Riesz spectral operator; infinite-dimensional linear port-Hamiltonian system; strongly continuous group; BOUNDARY CONTROL-SYSTEMS; EXACT CONTROLLABILITY; BASIS PROPERTY; WELL-POSEDNESS; STABILIZATION; EQUATIONS; FEEDBACK;
D O I
10.1137/20M1366216
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The location of the spectrum and the Riesz basis property of well-posed homogeneous infinite-dimensional linear port-Hamiltonian systems on a one-dimensional spatial domain are studied. It is shown that the Riesz basis property is equivalent to the fact that the system operator generates a strongly continuous group. Moreover, in this situation the spectrum consists of eigenvalues only, located in a strip parallel to the imaginary axis and they can decomposed into finitely many sets each having a uniform gap.
引用
收藏
页码:4646 / 4665
页数:20
相关论文
共 50 条
  • [11] PORT-HAMILTONIAN SYSTEMS THEORY AND MONOTONICITY
    Camlibel, M. K.
    Van der Schaftdagger, A. J.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2023, 61 (04) : 2193 - 2221
  • [12] On the stability of port-Hamiltonian descriptor systems
    Gernandt, Hannes
    Haller, Frederic E.
    IFAC PAPERSONLINE, 2021, 54 (19): : 137 - 142
  • [13] An Overview on Irreversible Port-Hamiltonian Systems
    Ramirez, Hector
    Le Gorrec, Yann
    ENTROPY, 2022, 24 (10)
  • [14] Port-Hamiltonian Formulation of Systems With Memory
    Jeltsema, Dimitri
    Doria-Cerezo, Arnau
    PROCEEDINGS OF THE IEEE, 2012, 100 (06) : 1928 - 1937
  • [15] OPTIMAL ROBUSTNESS OF PORT-HAMILTONIAN SYSTEMS
    Mehrmann, Volker
    Van Dooren, Paul M.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2020, 41 (01) : 134 - 151
  • [16] A STRUCTURAL OBSERVATION ON PORT-HAMILTONIAN SYSTEMS
    Picard, Rainer H.
    Trostorff, Sascha
    Watson, Bruce
    Waurick, Marcus
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2023, 61 (02) : 511 - 535
  • [17] Discrete stochastic port-Hamiltonian systems
    Cordoni, Francesco Giuseppe
    Di Persio, Luca
    Muradore, Riccardo
    AUTOMATICA, 2022, 137
  • [18] Generalized port-Hamiltonian DAE systems
    van der Schaft, Arjan
    Maschke, Bernhard
    SYSTEMS & CONTROL LETTERS, 2018, 121 : 31 - 37
  • [19] On Energy Conversion in Port-Hamiltonian Systems
    van der Schaft, Arjan
    Jeltsema, Dimitri
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 2421 - 2427
  • [20] Decomposition of Linear Port-Hamiltonian Systems
    Hoeffner, K.
    Guay, M.
    2011 AMERICAN CONTROL CONFERENCE, 2011, : 3686 - 3691