RIESZ BASES OF PORT-HAMILTONIAN SYSTEMS\ast

被引:3
|
作者
Jacob, Birgit [1 ]
Kaiser, Julia T. [1 ]
Zwart, Hans [2 ,3 ]
机构
[1] Univ Wuppertal, Sch Math & Nat Sci, IMACM, D-42119 Wuppertal, Germany
[2] Univ Twente, Dept Appl Math, NL-7500 AE Enschede, Netherlands
[3] Tech Univ Eindhoven, Dept Mech Engn, NL-5600 MB Eindhoven, Netherlands
关键词
Riesz spectral operator; infinite-dimensional linear port-Hamiltonian system; strongly continuous group; BOUNDARY CONTROL-SYSTEMS; EXACT CONTROLLABILITY; BASIS PROPERTY; WELL-POSEDNESS; STABILIZATION; EQUATIONS; FEEDBACK;
D O I
10.1137/20M1366216
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The location of the spectrum and the Riesz basis property of well-posed homogeneous infinite-dimensional linear port-Hamiltonian systems on a one-dimensional spatial domain are studied. It is shown that the Riesz basis property is equivalent to the fact that the system operator generates a strongly continuous group. Moreover, in this situation the spectrum consists of eigenvalues only, located in a strip parallel to the imaginary axis and they can decomposed into finitely many sets each having a uniform gap.
引用
收藏
页码:4646 / 4665
页数:20
相关论文
共 50 条
  • [21] Notch filters for port-Hamiltonian systems
    Dirksz, D. A.
    Scherpen, J. M. A.
    van der Schaft, A. J.
    Steinbuch, M.
    2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 238 - 243
  • [22] Learning port-Hamiltonian Systems—Algorithms
    V. Salnikov
    A. Falaize
    D. Lozienko
    Computational Mathematics and Mathematical Physics, 2023, 63 : 126 - 134
  • [23] Notch Filters for Port-Hamiltonian Systems
    Dirksz, D. A.
    Scherpen, J. M. A.
    van der Schaft, A. J.
    Steinbuch, M.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (09) : 2440 - 2445
  • [24] Reinforcement Learning for Port-Hamiltonian Systems
    Sprangers, Olivier
    Babuska, Robert
    Nageshrao, Subramanya P.
    Lopes, Gabriel A. D.
    IEEE TRANSACTIONS ON CYBERNETICS, 2015, 45 (05) : 1003 - 1013
  • [25] Learnability of Linear Port-Hamiltonian Systems
    Ortega, Juan-Pablo
    Yin, Daiying
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25 : 1 - 56
  • [26] PORT-HAMILTONIAN STRUCTURE OF INTERACTING PARTICLE SYSTEMS AND ITS MEAN-FIELD LIMIT\ast
    Jacob, Birgit
    Totzeck, Claudia
    MULTISCALE MODELING & SIMULATION, 2024, 22 (04): : 1247 - 1266
  • [27] Exergetic port-Hamiltonian systems for multibody dynamics
    Lohmayer, Markus
    Capobianco, Giuseppe
    Leyendecker, Sigrid
    MULTIBODY SYSTEM DYNAMICS, 2024,
  • [28] Finite element hybridization of port-Hamiltonian systems
    Brugnoli, Andrea
    Rashad, Ramy
    Zhang, Yi
    Stramigioli, Stefano
    APPLIED MATHEMATICS AND COMPUTATION, 2025, 498
  • [29] Bounded stabilisation of stochastic port-Hamiltonian systems
    Satoh, Satoshi
    Saeki, Masami
    INTERNATIONAL JOURNAL OF CONTROL, 2014, 87 (08) : 1573 - 1582
  • [30] Port-Hamiltonian systems with energy and power ports
    Krhac, Kaja
    Maschke, Bernhard
    van der Schaft, Arjan
    IFAC PAPERSONLINE, 2024, 58 (06): : 280 - 285