Finite element hybridization of port-Hamiltonian systems

被引:0
|
作者
Brugnoli, Andrea [1 ]
Rashad, Ramy [2 ]
Zhang, Yi [3 ]
Stramigioli, Stefano [4 ]
机构
[1] ICA, Université de Toulouse, ISAE–SUPAERO, INSA, CNRS, MINES ALBI, UPS, Toulouse, France
[2] Control and Instrumentation Engineering Department, King Fahd University of Petroleum and Minerals, Saudi Arabia
[3] School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin, China
[4] Robotics and Mechatronics Department, University of Twente, Netherlands
基金
欧洲研究理事会;
关键词
Differentiation; (calculus); -; Hamiltonians;
D O I
10.1016/j.amc.2025.129377
中图分类号
学科分类号
摘要
In this contribution, we extend the hybridization framework for the Hodge Laplacian [Awanou et al. (2023) [16]] to port-Hamiltonian systems describing linear wave propagation phenomena. To this aim, a dual field mixed Galerkin discretization is introduced, in which one variable is approximated via conforming finite element spaces, whereas the second is completely local. The mixed formulation is then hybridized to obtain an equivalent formulation that can be more efficiently solved using a static condensation procedure in discrete time. The size reduction achieved thanks to the hybridization is greater than the one obtained for the Hodge Laplacian as the final system only contains the globally coupled traces of one variable. Numerical experiments on the 3D wave and Maxwell equations illustrate the convergence of the method and the size reduction achieved by the hybridization. © 2025 Elsevier Inc.
引用
收藏
相关论文
共 50 条
  • [1] Port-Hamiltonian discontinuous Galerkin finite element methods
    Kumar, Nishant
    van der Vegt, J. J. W.
    Zwart, H. J.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2024,
  • [2] Finite-time thermodynamics of port-Hamiltonian systems
    Delvenne, Jean-Charles
    Sandberg, Henrik
    PHYSICA D-NONLINEAR PHENOMENA, 2014, 267 : 123 - 132
  • [3] Partitioned Finite Element Method for the Mindlin Plate as a Port-Hamiltonian
    Brugnoli, Andrea
    Alazard, Daniel
    Pommier-Budinger, Valerie
    Matignon, Denis
    IFAC PAPERSONLINE, 2019, 52 (02): : 88 - 95
  • [5] Stochastic Port-Hamiltonian Systems
    Francesco Cordoni
    Luca Di Persio
    Riccardo Muradore
    Journal of Nonlinear Science, 2022, 32
  • [6] Incrementally port-Hamiltonian systems
    Camlibel, M. K.
    van der Schaft, A. J.
    2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 2538 - 2543
  • [7] PORT-HAMILTONIAN SYSTEMS ON GRAPHS
    van der Schaft, A. J.
    Maschke, B. M.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2013, 51 (02) : 906 - 937
  • [8] Memristive port-Hamiltonian Systems
    Jeltsema, Dimitri
    van der Schaft, Arjan J.
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2010, 16 (02) : 75 - 93
  • [9] Stochastic Port-Hamiltonian Systems
    Cordoni, Francesco
    Di Persio, Luca
    Muradore, Riccardo
    JOURNAL OF NONLINEAR SCIENCE, 2022, 32 (06)
  • [10] Observability for port-Hamiltonian systems
    Jacob, Birgit
    Zwart, Hans
    2021 EUROPEAN CONTROL CONFERENCE (ECC), 2021, : 2052 - 2057