pyvine: The Python']Python Package for Regular Vine Copula Modeling, Sampling and Testing

被引:0
|
作者
Yuan, Zhenfei [1 ]
Hu, Taizhong [1 ]
机构
[1] Univ Sci & Technol China, Sch Management, Dept Stat & Finance, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Regular vine copula; Dependence structure; Multivariate modeling; Multivariate sampling; Rosenblatt’ s transformation; Anderson– Darling test; Bivariate copula; !text type='Python']Python[!/text; DISTRIBUTIONS; FORTRAN;
D O I
10.1007/s40304-019-00195-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Regular vine copula provides rich models for dependence structure modeling. It combines vine structures and families of bivariate copulas to construct a number of multivariate distributions that can model a wide range dependence patterns with different tail dependence for different pairs. Two special cases of regular vine copulas, C-vine and D-vine copulas, have been extensively investigated in the literature. We propose the Python package, pyvine, for modeling, sampling and testing a more generalized regular vine copula (R-vine for short). R-vine modeling algorithm searches for the R-vine structure which maximizes the vine tree dependence in a sequential way. The maximum likelihood estimation algorithm takes the sequential estimations as initial values and uses L-BFGS-B algorithm for the likelihood value optimization. R-vine sampling algorithm traverses all edges of the vine structure from the last tree in a recursive way and generates the marginal samples on each edge according to some nested conditions. Goodness-of-fit testing algorithm first generates Rosenblatt's transformed data E and then tests the hypothesis H0*:E similar to C perpendicular to by using Anderson-Darling statistic, where C perpendicular to is the independence copula. Bootstrap method is used to compute an adjusted p-value of the empirical distribution of replications of Anderson-Darling statistic. The computing of related functions of copulas such as cumulative distribution functions, H-functions and inverse H-functions often meets with the problem of overflow. We solve this problem by reinvestigating the following six families of bivariate copulas: Normal, Student t, Clayton, Gumbel, Frank and Joe's copulas. Approximations of the above related functions of copulas are given when the overflow occurs in the computation. All these are implemented in a subpackage bvcopula, in which subroutines are written in Fortran and wrapped into Python and, hence, good performance is guaranteed.
引用
收藏
页码:53 / 86
页数:34
相关论文
共 25 条
  • [1] pyvine: The Python Package for Regular Vine Copula Modeling, Sampling and Testing
    Zhenfei Yuan
    Taizhong Hu
    [J]. Communications in Mathematics and Statistics, 2021, 9 : 53 - 86
  • [2] dingo: a Python']Python package for metabolic flux sampling
    Chalkis, Apostolos
    Fisikopoulos, Vissarion
    Tsigaridas, Elias
    Zafeiropoulos, Haris
    [J]. BIOINFORMATICS ADVANCES, 2024, 4 (01):
  • [3] pyBSM: A Python']Python package for modeling imaging systems
    LeMaster, Daniel A.
    Eismann, Michael T.
    [J]. LONG-RANGE IMAGING II, 2017, 10204
  • [4] semopy: A Python']Python Package for Structural Equation Modeling
    Igolkina, Anna A.
    Meshcheryakov, Georgy
    [J]. STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2020, 27 (06) : 952 - 963
  • [5] KiMoPack: A python']python Package for Kinetic Modeling of the Chemical Mechanism
    Mueller, Carolin
    Pascher, Torbjorn
    Eriksson, Axl
    Chabera, Pavel
    Uhlig, Jens
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2022, 126 (25): : 4087 - 4099
  • [6] Validating pyBSM: A Python']Python package for modeling imaging systems
    LeMaster, Daniel A.
    Plummer, Philip J.
    Howard, Matthew D.
    Rucci, Michael A.
    [J]. LONG-RANGE IMAGING III, 2018, 10650
  • [7] forager: a Python']Python package and web interface for modeling mental search
    Kumar, Abhilasha A.
    Apsel, Molly
    Zhang, Larry
    Xing, Nancy
    Jones, Michael N.
    [J]. BEHAVIOR RESEARCH METHODS, 2024, 56 (06) : 6332 - 6348
  • [8] icepack: a new glacier flow modeling package in Python']Python, version 1.0
    Shapero, Daniel R.
    Badgeley, Jessica A.
    Hoffman, Andrew O.
    Joughin, Ian R.
    [J]. GEOSCIENTIFIC MODEL DEVELOPMENT, 2021, 14 (07) : 4593 - 4616
  • [9] GEMAct: a Python']Python package for non-life (re)insurance modeling
    Pittarello, Gabriele
    Luini, Edoardo
    Marchione, Manfred Marvin
    [J]. ANNALS OF ACTUARIAL SCIENCE, 2024,
  • [10] GWideCodeML: A Python']Python Package for Testing Evolutionary Hypotheses at the Genome-Wide Level
    Macias, Laura G.
    Barrio, Eladio
    Toft, Christina
    [J]. G3-GENES GENOMES GENETICS, 2020, 10 (12): : 4369 - 4372