PyGpPHs: A Python']Python Package for Bayesian Modeling of Port-Hamiltonian Systems

被引:0
|
作者
Li, Peilun [1 ]
Tan, Kaiyuan [1 ]
Beckers, Thomas [1 ]
机构
[1] Vanderbilt Univ, Dept Comp Sci, Nashville, TN 37235 USA
来源
IFAC PAPERSONLINE | 2024年 / 58卷 / 06期
关键词
port-Hamiltonian systems; physics-informed learning; Gaussian processes; EQUATION;
D O I
10.1016/j.ifacol.2024.08.256
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
PyGpPHs is a Python toolbox for physics-informed learning of physical systems. Compared to pure data-driven approaches, it relies on solid physics priors based on the Gaussian process port-Hamiltonian systems (GP-PHS) framework. This foundation guarantees that the learning procedure adheres to the fundamental physical laws governing real-world systems. Utilizing the Bayesian learning method, PyGpPHs enables physics-informed predictions with uncertainty quantification, which are based on the posterior distribution over Hamiltonians. The PyGpPHs toolbox is designed to make Bayesian learning with physics prior accessible to the learning and control community. PyGpPHs can be installed through an open-source link(1). Copyright (C) 2024 The Authors.
引用
收藏
页码:54 / 59
页数:6
相关论文
共 50 条
  • [21] Memristive port-Hamiltonian Systems
    Jeltsema, Dimitri
    van der Schaft, Arjan J.
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2010, 16 (02) : 75 - 93
  • [22] Stochastic Port-Hamiltonian Systems
    Cordoni, Francesco
    Di Persio, Luca
    Muradore, Riccardo
    JOURNAL OF NONLINEAR SCIENCE, 2022, 32 (06)
  • [23] pyRoCS: A Python']Python package to evaluate the resilience of complex systems
    Wachtel, Amanda
    Gunda, Thushara
    Caskey, Susan
    Cooper, Ryan
    Womack, Thomas
    Bonney, Kirk
    Kliesner, Kenneth
    SOFTWAREX, 2025, 29
  • [24] Observability for port-Hamiltonian systems
    Jacob, Birgit
    Zwart, Hans
    2021 EUROPEAN CONTROL CONFERENCE (ECC), 2021, : 2052 - 2057
  • [25] Discrete port-Hamiltonian systems
    Talasila, V
    Clemente-Gallardo, J
    van der Schaft, AJ
    SYSTEMS & CONTROL LETTERS, 2006, 55 (06) : 478 - 486
  • [26] forager: a Python']Python package and web interface for modeling mental search
    Kumar, Abhilasha A.
    Apsel, Molly
    Zhang, Larry
    Xing, Nancy
    Jones, Michael N.
    BEHAVIOR RESEARCH METHODS, 2024, 56 (06) : 6332 - 6348
  • [27] A port-Hamiltonian approach to modeling the structural dynamics of complex systems
    Warsewa, Alexander
    Boehm, Michael
    Sawodny, Oliver
    Tarin, Cristina
    APPLIED MATHEMATICAL MODELLING, 2021, 89 : 1528 - 1546
  • [28] Gaussian Process Port-Hamiltonian Systems: Bayesian Learning with Physics Prior
    Beckers, Thomas
    Seidman, Jacob
    Perdikaris, Paris
    Pappas, George J.
    2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 1447 - 1453
  • [29] Port-Hamiltonian systems: Network modeling and control of nonlinear physical systems
    van der Schaft, AJ
    ADVANCED DYNAMICS AND CONTROL OF STRUCTURES AND MACHINES, 2004, (444): : 127 - 167
  • [30] Vocal Fold Modeling through the port-Hamiltonian Systems Approach
    Encina, Marco
    Yuz, Juan
    Zanartu, Matias
    Galindo, Gabriel
    2015 IEEE CONFERENCE ON CONTROL AND APPLICATIONS (CCA 2015), 2015, : 1558 - 1563