PyGpPHs: A Python']Python Package for Bayesian Modeling of Port-Hamiltonian Systems

被引:0
|
作者
Li, Peilun [1 ]
Tan, Kaiyuan [1 ]
Beckers, Thomas [1 ]
机构
[1] Vanderbilt Univ, Dept Comp Sci, Nashville, TN 37235 USA
来源
IFAC PAPERSONLINE | 2024年 / 58卷 / 06期
关键词
port-Hamiltonian systems; physics-informed learning; Gaussian processes; EQUATION;
D O I
10.1016/j.ifacol.2024.08.256
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
PyGpPHs is a Python toolbox for physics-informed learning of physical systems. Compared to pure data-driven approaches, it relies on solid physics priors based on the Gaussian process port-Hamiltonian systems (GP-PHS) framework. This foundation guarantees that the learning procedure adheres to the fundamental physical laws governing real-world systems. Utilizing the Bayesian learning method, PyGpPHs enables physics-informed predictions with uncertainty quantification, which are based on the posterior distribution over Hamiltonians. The PyGpPHs toolbox is designed to make Bayesian learning with physics prior accessible to the learning and control community. PyGpPHs can be installed through an open-source link(1). Copyright (C) 2024 The Authors.
引用
收藏
页码:54 / 59
页数:6
相关论文
共 50 条
  • [31] crepes: a Python']Python Package for Generating Conformal Regressors and Predictive Systems
    Bostrom, Henrik
    CONFORMAL AND PROBABILISTIC PREDICTION WITH APPLICATIONS, VOL 179, 2022, 179
  • [32] Update 0.2 to "pysimm: A python']python package for simulation of molecular systems"
    Demidov, Alexander G.
    Fortunato, Michael E.
    Colina, Coray M.
    SOFTWAREX, 2018, 7 : 70 - 73
  • [33] Systems Neuroscience Computing in Python']Python (SyNCoPy): a python']python package for large-scale analysis of electrophysiological data
    Moenke, Gregor
    Schaefer, Tim
    Parto-Dezfouli, Mohsen
    Kajal, Diljit Singh
    Fuertinger, Stefan
    Schmiedt, Joscha Tapani
    Fries, Pascal
    FRONTIERS IN NEUROINFORMATICS, 2024, 18
  • [34] On the interconnection of irreversible port-Hamiltonian systems
    Ramirez, Hector
    Le Gorrec, Yann
    IFAC PAPERSONLINE, 2023, 56 (01): : 114 - 119
  • [35] Linear port-Hamiltonian descriptor systems
    Beattie, Christopher
    Mehrmann, Volker
    Xu, Hongguo
    Zwart, Hans
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2018, 30 (04)
  • [36] Linear port-Hamiltonian descriptor systems
    Christopher Beattie
    Volker Mehrmann
    Hongguo Xu
    Hans Zwart
    Mathematics of Control, Signals, and Systems, 2018, 30
  • [37] PORT-HAMILTONIAN SYSTEMS THEORY AND MONOTONICITY
    Camlibel, M. K.
    Van der Schaftdagger, A. J.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2023, 61 (04) : 2193 - 2221
  • [38] On the stability of port-Hamiltonian descriptor systems
    Gernandt, Hannes
    Haller, Frederic E.
    IFAC PAPERSONLINE, 2021, 54 (19): : 137 - 142
  • [39] An Overview on Irreversible Port-Hamiltonian Systems
    Ramirez, Hector
    Le Gorrec, Yann
    ENTROPY, 2022, 24 (10)
  • [40] OPTIMAL ROBUSTNESS OF PORT-HAMILTONIAN SYSTEMS
    Mehrmann, Volker
    Van Dooren, Paul M.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2020, 41 (01) : 134 - 151