pyRoCS: A Python']Python package to evaluate the resilience of complex systems

被引:0
|
作者
Wachtel, Amanda [1 ]
Gunda, Thushara [1 ]
Caskey, Susan [1 ]
Cooper, Ryan [1 ]
Womack, Thomas [1 ]
Bonney, Kirk [1 ]
Kliesner, Kenneth [1 ]
机构
[1] Sandia Natl Labs, Albuquerque, NM 87123 USA
关键词
PyRoCS; Resilience; Metrics; Complex systems; Biosciences; Information theory;
D O I
10.1016/j.softx.2024.101977
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper introduces pyRoCS, an open source Python-based software that enables users to quantify resilience of complex systems. The metrics used to quantify resilience are sourced from peer-reviewed publications across multiple domains, including information theory, biosciences, and complex systems. Functions within associated domain modules can be combined based on user needs to support the characterization of resilience. Data structures from various domains (e.g., media coverage, organizational structures, and hazard analyses in critical infrastructures) could be analyzed using metrics within pyRoCS, including those collected in the field or derived from modeling and simulations. The conversion of these existing metrics into a formal software package increases the robustness and transparency of current implementations. Furthermore, the inclusion of multiple disciplinary metrics enables exploration of how resilience concepts are translated into practice, an area of interest in multiple domains.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Analysing the resilience of agricultural production systems with ResiPy, the Python']Python production resilience estimation package
    Zampieri, Matteo
    Toreti, Andrea
    Ceglar, Andrej
    De Palma, Pierluca
    Chatzopoulos, Thomas
    Michetti, Melania
    SOFTWAREX, 2021, 15 (15)
  • [2] pyMune: A Python']Python package for complex clusters detection
    Abbas, Mohamed Ali
    El-Zoghabi, Adel
    Shoukry, Amin
    SOFTWARE IMPACTS, 2023, 17
  • [3] pyBSM: A Python']Python package for modeling imaging systems
    LeMaster, Daniel A.
    Eismann, Michael T.
    LONG-RANGE IMAGING II, 2017, 10204
  • [4] pysimm: A python']python package for simulation of molecular systems
    Fortunato, Michael E.
    Colina, Coray M.
    SOFTWAREX, 2017, 6 : 7 - 12
  • [5] Validating pyBSM: A Python']Python package for modeling imaging systems
    LeMaster, Daniel A.
    Plummer, Philip J.
    Howard, Matthew D.
    Rucci, Michael A.
    LONG-RANGE IMAGING III, 2018, 10650
  • [6] CELL: a Python']Python package for cluster expansion with a focus on complex alloys
    Rigamonti, Santiago
    Troppenz, Maria
    Kuban, Martin
    Huebner, Axel
    Draxl, Claudia
    NPJ COMPUTATIONAL MATERIALS, 2024, 10 (01)
  • [7] SeqBreed: a python']python tool to evaluate genomic prediction in complex scenarios
    Perez-Enciso, Miguel
    Ramirez-Ayala, Lino C.
    Zingaretti, Laura M.
    GENETICS SELECTION EVOLUTION, 2020, 52 (01)
  • [8] crepes: a Python']Python Package for Generating Conformal Regressors and Predictive Systems
    Bostrom, Henrik
    CONFORMAL AND PROBABILISTIC PREDICTION WITH APPLICATIONS, VOL 179, 2022, 179
  • [9] Update 0.2 to "pysimm: A python']python package for simulation of molecular systems"
    Demidov, Alexander G.
    Fortunato, Michael E.
    Colina, Coray M.
    SOFTWAREX, 2018, 7 : 70 - 73
  • [10] Systems Neuroscience Computing in Python']Python (SyNCoPy): a python']python package for large-scale analysis of electrophysiological data
    Moenke, Gregor
    Schaefer, Tim
    Parto-Dezfouli, Mohsen
    Kajal, Diljit Singh
    Fuertinger, Stefan
    Schmiedt, Joscha Tapani
    Fries, Pascal
    FRONTIERS IN NEUROINFORMATICS, 2024, 18